• Title/Summary/Keyword: Suspended matters

Search Result 116, Processing Time 0.024 seconds

The analysis of variational characteristics on water quality and phytoplankton by principal component analysis(PCA) in Kogum-sudo, Southwestern part of Korea (주성분분석에 의한 거금수도의 수질환경 및 식물플랑크톤 변동 요인 해석)

  • 윤양호;박종식
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • A study on the variational characteristics of water quality and phytoplankton biomass by principal component analysis(PCA) was carried out in Kogum-sudo from February to October in 1993. We analyzed PCA on biological factors such as chlorophyll a and phytoplankton cell numbers for centric and pennate diatoms, phytoflagellates, and total phytoplankton as well as physico-chemical factors as water temperature, salinity, transparency, dissolved oxygen(DO), saturation of DO, apparent oxygen utilization (AOU), chemical oxygen demand(COD), nutrient (ammonia, nitrite, nitrate, phosphate and silicate), N/P ratio and suspended solid(SS). The source of nutrients supply depended on the mineralization of organic matters and inputs of seawater from outside rather than runoff of freshwater. The phytoplankton biomass was changed within short interval period by nutrients change. And it was controlled by the combination of several environmental factors, especially of light intensity, ammonia and phosphate. The marine environmental characteristics were determined by the mineralization of organic matters in winter, by runoff of freshwater including high nutrients concentration in spring, by ammonia uptake and high phytoplankton productivity in summer, and phosphate supplied input seawater from outside of Kogeum-sudo in autumn. And Kogum-sudo was separated with 2 regions by score distributions of PCA. That is to say, one region was middle parts of straits which was characterized by the mixing seawater and the accumulated organic matters, other one region was Pungnam Bay and the water around Kogum Island which was done by high phytoplankyon biomass and productivity year-round.

  • PDF

Advanced Wastewater Treatment Using Biofilter System with Floating Media under Alternative Flow (유로변경식 부상여재 생물여과시스템을 이용한 하수고도처리)

  • Ryu, Hong-Duck;Lee, Jeong-Hun;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.250-257
    • /
    • 2006
  • The objective of this study is to propose an alternative process for the small sewage treatment plants in rural communities. A biofilter has been used for biological wastewater treatment, which is becoming the alternative to the conventional activated sludge system. The proposed process used in this study, which is packed with floating media (i.e. expanded polystylene), has advantages of biofilter system and alternative flow system and they are incorporated into one process. Pilot and bench scale studies were performed using domestic wastewater. In the results of pilot plant study, it was observed that the stable effluent water quality was achieved and it met the present effluent criteria of suspended solid (SS), organic matters, T-N and T-P. In the study for determination of the cycle of backwashing, it was observed that the cycle of backwashing depended on BOD loading rates of influents. In the BOD loading rates of $0.5kg\;BOD/m^3{\cdot}day$ and $1.0kg\;BOD/m^3{\cdot}day$, the backwashing cycle of 28 hour and 16 hour were needed, respectively. The optimum backwashing time was 120~80 seconds at the media expansion rate of 50%. In the removal of SS, organic matters, T-N and T-P, SS removal was rather achieved by physical filtration than biological mechanism and the removal of organic matters except for SS, T-N and T-P were mainly rather achieved by biological mechanism than physical filtration. In bench-scale study, the effects of recirculation rate was investigated on removal of SS, TCOD, T-N and T-P. It was observed that the recirculation made removal efficiencies of SS, TCOD, T-N and T-P increased. Especially, in T-N removal, the increase of T-N removal efficiency of 40% was observed in the reicirculation rate of 1Q compared with 0Q.

Recycling of Suspended Particulates by Atmospheric Boundary Depth and Coastal Circulation (대기경계층과 연안순환에 의한 부유입자의 재순환)

  • Choe, Hyo
    • Journal of Environmental Science International
    • /
    • v.13 no.8
    • /
    • pp.721-731
    • /
    • 2004
  • The dispersion of suspended particulates in the coastal complex terrain of mountain-inland basin (city)-sea, considering their recycling was investigated using three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). Convective boundary layer under synoptic scale westerly wind is developed with a thickness of about I km over the ground in the west of the mountain, while a thickness of thermal internal boundary layer (TIBL) is only confined to less than 200m along the eastern slope of the mountain, below an easterly sea breeze circulation. At the mid of the eastern slop of the mountain, westerly wind confronts easterly sea breeze, which goes to the height of 1700 m above sea level and is finally eastward return flow toward the sea. At this time, particulates floated from the ground surface of the city to the top of TIBL go along the eastern slope of the mountain in the passage of sea breeze, being away the TIBL and reach near the top of the mountain. Then those particulates disperse eastward below the height of sea-breeze circulation and widely spread out over the coastal sea. Total suspended particulate concentration near the ground surface of the city is very low. On the other hand, nighttime radiative cooling produces a shallow nocturnal surface inversion layer (NSIL) of 200 m thickness over the inland surface, but relatively thin thickness less than 100m is found near the mountain surface. As synoptic scale westerly wind should be intensified under the association of mountain wind along the eastern slope of mountain to inland plain and further combine with land-breeze from inland plain toward sea, resulting in strong wind as internal gravity waves with a hydraulic jump motion bounding up to about 1km upper level in the atmosphere in the west of the city and becoming a eastward return flow. Simultaneously, wind near the eastern coastal side of the city was moderate. Since the downward strong wind penetrated into the city, the particulate matters floated near the top of the mountain in the day also moved down along the eastern slope of the mountain, reaching the. downtown and merging in the ground surface inside the NSIL with a maximum ground level concentration of total suspended particulates (TSP) at 0300 LST. Some of them were bounded up from the ground surface to the 1km upper level and the others were forward to the coastal sea surface, showing their dispersions from the coastal NSIL toward the propagation area of internal gravity waves. On the next day at 0600 LST and 0900 LST, the dispersed particulates into the coastal sea could return to the coastal inland area under the influence of sea breeze and the recycled particulates combine with emitted ones from the ground surface, resulting in relatively high TSP concentration. Later, they float again up to the thermal internal boundary layer, following sea breeze circulation.

Characteristics of Variation of Suspended Matters in the Cheju Coastal Area of Korea (제주 연안해역의 부유물질 변화특성)

  • Youn, Jeung-Su;Pyen, Choong-Kyu
    • Journal of Aquaculture
    • /
    • v.5 no.1
    • /
    • pp.93-108
    • /
    • 1992
  • This study was conducted to understand the variation of suspended matters in coastal waters of Cheju Island. Water sampling was carried out at 22 stations along the coast of this island from March 1988 to November 1989. Analyzed and/or observed items were water temperature, salinity, total solids (TS), total dissolved solids (TDS), volatile suspended solids (VSS), and fixed suspended solids (FSS). Inter-relationships between wind velocity, precipitation and total suspended solids (TSS) were also investigated. More windy days prevail in winter season (December, January and February) in Cheju Island. Thirty-six points seven percent of total windy days of a year appeared in this season. The rate of windy days in spring was $27.3\%$ and those in summer and fall were $17.9{\%}$ each. From February to July, the heaviest precipitation was observed in the southeastern area and that from August to January was observed in the eastern part of this island. TS and TDS were firmly related with the fluctuation of salinity. Therefore, there were higher in spring and lower in summer. The highest TSS (7.73 $mg/{\ell}$) was observed in February and was the lowest (4.73 $mg/{\ell}$) in September. Annual mean value of TSS was 6.3$mg/{\ell}$. The highest VSS (2.03 $mg/{\ell}$) was observed in July and lowest (1.42 $mg/{\ell}$) in September. The percentage of VSS per 755 was $30.6{\%}$ in average that was not much higher level compared to the other polluted areas. This value became higher in summer (av. $34.17{\%}$) and lower in winter (av. $24.2{\%}$). Fluctuation of TSS was mainly related with the freshwate. discharge, tidal action, and re-suspension of bottom sediments by the wind waves. Therefore, TSS concentration was low in summer and hish in winter.

  • PDF

A Study on Chemical Composition of Dustfall Samples in Cheju Area - 1. Chemical composition and deposition (제주지역 강하 먼지의 조성에 관하여 - 1. 화학적 조성 및 침적량)

  • 이기호;허철구;송문호;박용이
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.1
    • /
    • pp.13-22
    • /
    • 1999
  • This study is carried out to investigate the chemical composition of atmospheric deposition in Cheju Island, Korea. For this purpose, dustfall matter samples are collected by dust jar from August, 1995 to July, 1996 at five sampling sites and total suspended particulate matters (TSP) and rain are also collected at one site from October, 1995 to July, 1996. All the samples collected are analyzed, and then the information of the 19 chemical species and deposition amount of each species is obtained. These data are used to determine the regional trends in dustfall chemistry and deposition, and compare the characteristics of chemical compositions between dustfall, TSP and rainwater.

  • PDF

A Study on the Size Distribution of Trace Metals Concentrations in the Ambient Aerosols (대기부유분진 중 미량 금속원소의 입경별 농도분포에 관한 연구)

  • 신훈중;이태정;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.67-77
    • /
    • 1996
  • Total suspended particulate matters (TSP) were collected based on a size segregation method by a cascade impactor for 6 consecutive years (form Dec. 1989 to sep. 1994) in the Kyung Hee University-Suwon Campus, and 6 trace metals (Ca, Si, Fe, Pb, Cu, Zn) were determined by an x-ray fluorescence spectroscopy. Total number of samples collected during the study are 118 sets and each set of sample comsists of 9 filters. The levels of TSP and 6 trace metals were then used to examine seasonal and annual variations with respects to their size distributions. For statistical analyses, raw data were initially transformed by both logarithmic and root transformating to approximately normalize them, and then size distribution functions for each trace element were separately developed season-to-season by a regression analysis in order to obtain maximum amount of physical information, Subsequently, each developed model was verified by comparing with supervised data collected on 1994. The result showed that each prediction model was in good agreement except the fall, partly due to lack of the data collected on fall, 1994.

  • PDF

Concentration Rise of Fine Particle according to Resuspended Dust from Paved Roads after Sudden Heavy Rain in Busan (부산 도심지역 기습 폭우 후 형성된 도로면 토사의 재비산에 의한 미세먼지 농도 상승)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.25 no.5
    • /
    • pp.705-713
    • /
    • 2016
  • This study investigates the concentration sudden rise in fine particle according to resuspended dust from paved roads after sudden heavy rain in Busan on August 25, 2015. The localized torrential rainfall in Busan area occurred as tropical airmass flow from the south and polar airmass flow from north merged. Orographic effect of Mt. Geumjeong enforced rainfall and it amounted to maximum 80 mm/hr at Dongrae and Geumjeong region in Busan. This heavy rain induced flood and landslide in Busan and the nearby areas. The sudden heavy rain moved soil and gravel from mountainous region, which deposited on paved roads and near roadside. These matters on road suspended by an automobile transit, and increased fine particle concentration of air. In addition outdoor fine particle of high concentration flowed in indoor by shoes, cloths and air circulation.

Pre-treatment Characteristics of Night Soil by Microbubble (마이크로버블을 이용한 분뇨의 전처리 특성)

  • Lim, Ji-young;Kim, Hyun-sik;Park, Soo-young;Kim, Jin-Han
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.31-37
    • /
    • 2016
  • This study was conducted to investigate the effect of OH radicals on organic matter oxidation and suspended solids removal using microbubble as a pre-treatment technique to reduce the organic load of night soil in connection with sewage. The experiment was conducted for three months at HRT 4 hours using pressurized type microbubble generator. The mean SS removal efficiency was achieved 71%. The average removal efficiency of $TCOD_{Cr}$, TBOD, TN and TP were achieved for 51.5%, 47.9%, and 14.7% respectively, as scum and SS were removed by flotation separation. The removal efficiency of soluble organic matters were 25.0%, 17.1% for $SCOD_{Cr}$, SBOD by air microbubble supply. Soluble nitrogen and phosphorus were removed average of 11.9% and 7.4%, respectively. As s result, it was confirmed that soluble organic matters were removed by air microbubble supplied. Generated OH radicals when the microbubble was collapsed, can decompose the soluble organic matters. Therefore, The microbubble flotation process was installed at the front of night soil treatment process, it will contribute to the stable operation of the subsequent biological treatment facility by oxidation of the dissolved organic matters as well as removal of SS by flotation separation.

Atmospheric concentration and mutagenicity of organic pollutants of suspended particulate in Seoul (서울시 대기중 유기오염물질의 농도와 돌연변이원성에 대한 연구)

  • Shin, Dong-Chun;Chung, Yong;Moon, Young-Hahn;Roh, Jae-Hoon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.23 no.1 s.29
    • /
    • pp.43-56
    • /
    • 1990
  • To evaluate the difference of concentration and mutagenicity of organic pollutants between residential and traffic area of Seoul, air samples were collected in Bulkwang (residential) and Shinchon (traffic) area. Samples were analyzed to measure the concentration of extractable organic matters (EOM) and their subfractions and mutagenicities were tested using Salmonella typhimurium TA 98. The concentrations of polycyclic aromatic hydrocarbons (PAHs) were also measured by gas-chromatography and compared between two areas. The results were as follows ; 1. While the concentration of total suspended particulate (TSP) in residential area was below the environmental standard in annual average, the concentration in traffic area was above the standard and was up to its maximum $256{\mu}g/m^3$ in November. The difference of TSP concentrations in both areas of each month was statistically significant (P<0.05). 2. The concentration of fine particle in traffic area was significantly higher compare to that in residential area and showed statistically significant monthly difference in both areas (P<0.05). The proportion of concentration of fine particle to TSP was 55-68%. 3. Mean concentrations of EOM in residential and traffic areas were $4.3{\mu}g/m^3\;and\;5.3{\mu}g/m^3$ respectively. The proportion of amount of EOM from fine particle to EOM from TSP was 70-88%. 4. While the percentage of polar neutral organic compounds (POCN) of fine particle in Bulkwang's sample was higher compare to Shinchon's sample, the percentage of aliphatic compounds of fine particle in Shinchon's sample was higher compare to Bulkwang's sample. The percentages of PAH fraction were as low as 6-10% in both areas. 5. The mutagenic activity of nit concentration of organic matters extracted from fine particle was higher compare to that of coarse particle and was increased when metabolically activated with S9. Mutagenicities with metabolic activation calculated by unit air volume were significantly different between residential and traffic area, $17\;revertants/m^3$\;and\;22\;revertants/m^3$ respectively. 6. The concentrations of benzo(a)pyrene in fine particle of traffic and residential areas were $3.10ng/m^3\;and\;2.02ng/m^3$ respectively. Sixteen PAHs were higher in samples of traffic area compare to residential area and also concentrations of PAHs in fine particle were higher compare to coarse particle.

  • PDF

Effect of Particulate Matter on the UV-Disinfection of Virus and Risk Assessment (입자성 물질 농도가 바이러스의 UV-처리와 위해성에 미치는 영향 평가)

  • Shin, Yu-Ri;Yoon, Chun-Gyeong;Rhee, Han-Pil;Lee, Seung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.1028-1033
    • /
    • 2010
  • Wastewater reuse for agricultural irrigation needs treatment and control of pathogens to minimize risks to human health and the environment. In order to evaluate the water quality of UV-treated reclaimed water, this study focused on the relationship between micro-pathogens and particulate matters. MS2 was selected as an index organism because it has similar characteristics to human enteric virus and strong resistance to UV disinfection. The turbidity and suspended solid (SS) were selected for test parameters. In this study, it was performed with different UV doses (30 and $60mJ/cm^2$) for estimation of the MS2 inactivation rate using collimated beam batch experiments in the laboratory. The experiment results by turbidity or SS concentration presented that the increased concentration of them lowered MS2 inactivation. At the turbidity (below 4.27 NTU) and SS (below 1.47 mg/L) of the low level range, the inactivation of 60 UV dose is higher than 30 UV dose. However, at the turbidity and SS of the high level, the increasing UV dose did not show apparent increasing the MS2 inactivation. In quantitative microbial risk assessment (QMRA), it can confirm the trend that $P_D$ and turbidity concentrations have positive correlationship at the low concentration, which was also observed in SS. The QMRA can be helpful in communication with public for safe wastewater reuse and be recommended.