• Title/Summary/Keyword: Survivability & Stealth Technology

Search Result 14, Processing Time 0.043 seconds

Measurement and Analysis for 3-D RCS of Maritime Ship based on 6-DOF Model (6 자유도 모델에 기반한 운항중인 함정의 3차원 RCS 측정 및 분석 기법)

  • Gwak, Sang-yell;Jung, Hoi-in
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.429-436
    • /
    • 2018
  • The RCS value of maritime ship is indicator of ship's stealth performance and it should be particularly measured for navy ship to ensure survivability on the battlefield. In the design phase of the navy ship, a RCS prediction should be performed to reduce RCS value and achieve ROC(Required Operational Capability) of the ship through configuration control. In operational phase, the RCS value of the ship should be measured for verifying the designed value and obtaining tactical data to take action against enemy missile. During the measurement of RCS for the ship, ship motion can be affected by roll and pitch in accordance with sea state, which should be analyzed into threat elevation from view point of enemy missile. In this paper, we propose a method to measure and analyze RCS of ship in 3-dimensions using a ship motion measuring instrument and a fixed RCS measurement system. In order to verify the proposed method, we conducted a marine experiment using a test ship in sea environment and compared the measurement data with RCS prediction value which is carried by prediction SW($CornerStone^{TM}$) using CAD model of the ship.

Study on Effectiveness of Ocean Meteorological Variables through Sensitivity Analysis of Ship Infrared Signature (함정 적외선신호 민감도 해석을 통한 기상변수 영향에 관한 연구)

  • Cho, Yong-Jin;Jung, Ho-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.36-42
    • /
    • 2013
  • According to a study on improving ship survivability, an IR signature represents the contrast radiance intensity between the radiation signature from a ship and the background signature. It was found from applying stealth techniques to the process of ship development that the IR signature is remarkably sensitive and dependent on the environment. In this study, marine climate data for the sea near the Korean Peninsula were collected, and the marine meteorological environment in Korean waters was defined. Based on this data, a study on the sensitivity of the IR signature of target objects was performed using analytical methods. The results of the research indicated that clouds have important effects on the infrared signature, but the velocity of the wind and the humidity have only slight effects on the IR signature. In addition, the air and seawater temperatures had hardly any effect on the IR signature, but it is judged that additional study is needed.

Thermal Signature Characteristics of Clothed Human Considering Thermoregulation Effects (체온 조절 작용을 고려한 의복 착용 시의 인체 열상신호 특성 분석)

  • Chang, Injoong;Bae, Ji-Yeul;Lee, Namkyu;Kwak, Hwykuen;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.109-116
    • /
    • 2019
  • Survivability of soldiers has been greatly threatened by the development of thermal observation device(TOD). Therefore, infrared, especially thermal, stealth technology is applied to combat suit to avoid detection from TOD. In this study, prior to the thermal camouflage performance evaluation of combat suit, thermal signature characteristic from clothed the human body was analyzed considering the realistic condition for human surface temperature compared to that from unclothed human body. To get the realistic surface temperature distribution of human, thermoregulation and multi-layer skin structure model is applied to the human model. Based on temperature distribution, surface diffuse radiance in thermal range is calculated and by assuming the background conditions, contrast radiance intensity(CRI) characteristic of human body is analyzed. By wearing clothing, the CRI between background and human body became reduced in low emissive background but in high emissive background, the contrast is much more prominent. Therefore, this issue should be considered in design process of thermal camouflage combat suit.

A Study on the Solutions of Guided Missile Attacks using 3-D RCS Data of Maritime Ship (함정의 3차원 RCS 측정 데이터를 활용한 유도탄 대응 기법 연구)

  • Gwak, Sang-Yell
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.552-557
    • /
    • 2020
  • The Radar Cross Section (RCS) is a virtual region indicating the strength of a wavelength at which a radar signal is reflected and received. As the ship's RCS represents its own stealth performance and survivability, efforts have been made in various areas from design to construction to reduce the RCS. The RCS can be predicted using design drawings and CAD models, but it is necessary to measure the RCS at sea since sea clutter and multipath reflections occur in the sea environment. However, such RCS predictions and measured values provide only a simple relative magnitude to the user, and there has not been much research on this topic. In this paper, a missile countermeasure technique was studied using 3D RCS measurement data in an operating environment. The elevation and azimuth angle of the ship viewed from the missile were estimated using the location information of the missile, and the RCS value was inverted by mapping it to previously measured 3D RCS measurement data. In addition, by using the movement information of the missile, the RCS observed by the missile could be predicted in advance, and this method can be used to propose a response plan based on the maneuvering and chaff system.