• Title/Summary/Keyword: Surplus flow

Search Result 43, Processing Time 0.025 seconds

The Prediction of Remodelling Timing Based on the Cash Flow of Permanent Rental Housing (영구임대주택의 현금흐름을 고려한 리모델링 시기 추정에 관한 연구)

  • Kim, Doo-Seok;Ha, Heon-Seok;Kim, Yong-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.135-142
    • /
    • 2004
  • The purpose of this study is to predict remodeling timing of Permanent Rental Housing through historic data and cash flow analysis. For this aim, the study has estimated cash flow of Permanent Rental Housing considering initial construction costs, government supporting fund, rental incomes and maintenance expenses. Based on the expected cash flow analysis, reasonable remodeling timing is predicted for Permanent Rental Housing. The results of this study are as follows: (1) it is analyzed that building a8e of about 27 years is the best time for remodeling because cumulative surplus amounts reach maximum level, (2) it is required that remodeling should be made before 34 years of age roughly because cumulative surplus amounts change into minus from this time.

Improving Hydraulic System Design by Analysis Model of a Self-propelled Spinach Harvester (자주식 시금치 수확장치 해석모델을 활용한 유압시스템 개선 설계 제안)

  • Noh, Dae Kyung;Lee, Dong Won;Lee, Jong Su;Jang, Joo Sup
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.69-75
    • /
    • 2022
  • This study aimed to develop solutions for the intermittent performance deterioration of self-propelled spinach harvesters through analysis model. The study was conducted in the following manner. First, changes in performance deterioration and surplus flow, which result from oil temperature changes, were analyzed by simulating actual sequential harvesting movements, which involve driving with actuators operated simultaneously, by analysis model developed in a previous study. Second, fundamental solutions for surplus flow problems were presented. Third, the solutions were applied to a virtual environment to present their practicality and quantitative effects. The two solutions based on the study results were as follows. First, a closed center-type directional control valve was applied to the hydraulic circuit. Second, an unloading system was set up through an on-off solenoid valve.

Analysis of Surplus Flow in a Hydraulic System Applied to a Self-propelled Spinach Harvester (자주식 시금치 수확장치에 적용된 유압시스템의 잉여유량 분석)

  • Noh, Dae Kyung;Lee, Dong Won;Lee, Jong Su;Jang, Joo Sup
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.26-33
    • /
    • 2022
  • This study dealt with a self-propelled spinach harvester, which is capable of carrying out sequential harvesting work. This study aimed to find the cause of the harvester's occasional performance deterioration, which occurs in the process of simplifying the hydraulic circuit, using a multi-domain analysis model. The study was carried out in the following manner. First, a hydraulic system analysis model, which combines linear motion, rotary motion, hydrodynamic behavior, and an electrical signal, was developed through SimulationX software, specialized in multi-domain analysis. Second, a scenario for single behavior and coupled behavior was set out on an actuator basis. Third, the flow rate of the hydraulic system, which is not required for the movement of the actuator, was quantitatively analyzed. The results showed that a change in oil temperature was the cause of the harvester's occasional performance deterioration. And the higher the oil temperature, the more serious the performance deterioration, especially as the number of actuators operated simultaneously was small.

The Use of Finite Element Method to Predict the Hot Shear-Welding Process of Two Aluminum Plates

  • Shang, Li-Dong;Lee, Kyeng-Kook;Jin, In-Tai
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.426-430
    • /
    • 2008
  • Hot shear-welding is a process of bonding two plates together by using shearing stress in a controlled manner. This study dealt with the hot shear-welding process of two aluminum plates. These two plates were piles up in the shear-welding mold. Due to the shearing stress, these two plates were cut off longitudinally, and meantime they were welded together. During this process the control of the surplus material flow is very important, and it can be realized by designing the overlapping length and the shape of the cavity. The commercial software Deform-3D was employed to predict the effect of these two factors. The overlapping length and the shape of the cavity that presents the optimum design was then developed to get a good shear-welding process.

  • PDF

Flow characteristics analysis and test in the Pelton turbine for pico hydro power using surplus water (잉여 유출수를 이용한 소수력발전용 수차의 유동특성 해석 및 시험)

  • Jeong, Seon Yong;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2016
  • Computational fluid numerical analysis using the commercial code CFX was performed to develop a Pelton turbine for a pico hydro power generator using the circulating water of a cooling tower in a large building. The performance of the Pelton turbine was examined for different design factors, such as the bucket shape, in which the Pelton wheel was connected in an appropriate manner to the pipe section, and the number of buckets in order to find the optimal design of Pelton turbine for a pico hydro power using surplus water. A benchmark test was carried out on the manufactured small scale Pelton turbine to validate the design method of the Pelton turbine by numerical analysis. The results obtained by comparing the flow characteristics and power output measured using the ultrasonic flowmeter, the pressure transducer and the oscilloscope with the numerical results confirmed the validity of the analytical design method. The possibility of developing Pelton turbines for kW class pico hydro power generators using surplus water with an average circulation velocity of 1.2 m/s for the chosen bucket shape and number of buckets in a 30 m high building was confirmed.

A Experimental Study on the Determination of Construction method of Controled Low-strength Material Accelerated Flow Ability Using Surplus Soil for Underground Power Line (지중송전관로용 급결 유동성 뒤채움재의 시공법 설정에 관한 실험적 연구)

  • Oh, Gi-Dae;Kim, Dae Hong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.84-93
    • /
    • 2010
  • Compaction of backfill material of Underground power lines is difficult, especially under pipeline. so it could cause structural problem because of low compaction efficiency. So various methods have been taken to solve the problem and one of them is CLSM(Controled low-strength material accelerated flow ability). But In other countries, these are already in progress for a long time to research and development and recently on practical steps. But, in our country, study for only general structures, not for underground power line structure that is being constructed at night rapidly. In this study, we performed property tests and indoor & outdoor test (3 cases). The tests showed flow ability reached at the limit construction(160 mm) flowability by 9 to 15 minute after starting to mix, and construction buoyant is lowering after placing CLSM by 70 % of theoretical buoyant that is calculated by unit weight of material. In this paper, we performed indoor tests and outdoor tests to estimate mechanical properties and to suggest construction method(using batch plant, setting spacer at 1.8 m and placing at 2m) for CLSM that using surplus soil. And the test showed good results for construction quality, workability and structure safety.

  • PDF

Low Temperature Flow Properties of Palm Biodiesel (팜 바이오디젤의 저온유동성)

  • Jeong, Byung-Hwan;Lee, Kwang-Seok;Kim, Yong-Dai;Shin, Chae-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.602-605
    • /
    • 2007
  • Soybean and rape seed are common feedstocks for biodiesel product ion in USA and Europe, respectively. On the other hand, South Eastern countries like Malaysia and Indonesia have surplus palm crops. However due to substantial amount of saturated fats in palm, the palm biodiesel has poor low temperature properties. To improve the low temperature flow properties as biodiesel, the dependence of the cold filter plugging point (CFPP) on the fatty acid compositions was examined. Two different kinds of biodiesels, palm and soybean biodiesels, were blended with the different volume ratios. And the low temperature flow properties of 0.5%, 1%, and 5% biodiesel in diesel blend fuels was tested. The decrease of CFPP was not observed for BD1 with Palm BD. Also, WDI test didn't exceed in the range of 4oC by the mixing of Palm BD upto 5% in commercial diesels.

  • PDF

Feeder Loop Line Control for the Voltage Stabilization of Distribution Network with Distributed Generators

  • Jeong, Bong-Sang;Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • When renewable sources are connected to the distribution network in the form of a distributed generators(DGs), the effect of intermittent output appears as voltage fluctuation. The surplus power at the consumer ends results in the reverse power flow to the distribution network. This reverse power flow causes several problems to the distribution network such as overvoltage. Application of the reactive power control equipment and power flow control by means of BTB inverter have been suggested as the general solutions to overcome the overvoltage, but they are not economically feasible since they require high cost devices. Herein, we suggest the feeder loop line switch control method to solve the problem.

Experimental Study on Heat and Mass transfer Coefficient Comparison Between Counterflow Types and Parallel in Packed Tower of Dehumidification System

  • Sukmaji, I.C.;Choi, K.H.;Yohana, Eflita;Hengki R, R.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.162-169
    • /
    • 2009
  • In summer electrical energy is consumed in very high rate. It is used to operate conventional air conditioning system. Hot and humid air can germinate mould spores, encourage ill health, and create physiological stress (discomfort). Dehumidifier solar cooling effect is the one alternative solution saving electrical energy. We use surplus heat energy in the summer, to get cooling effect and then to get human reach to comfort condition. These devices have two system, dehumidifier and regeneration system. This paper will be focus in dehumidifier system. Dehumidifier system use for absorbing moisture in the air and decreasing air temperature. When the liquid desiccant as strong solution contact with the vapor air in the packed tower, it works. The heat and mass transfer performances of flow pattern in the packed tower of dehumidifier are analyzed and compared in detail. In this experiment was introduced, the flow patterns are parallel flow and counter flow. The performance of these flow patterns will calculate from air side. Which is the best flow pattern that gave huge mass transfer rate? The proposed dehumidifier flow pattern will be helpful in the design and optimization of the dehumidifier solar cooling system.

  • PDF