• Title/Summary/Keyword: Surge Vessel

Search Result 19, Processing Time 0.021 seconds

Sliding Mode Control with Super-Twisting Algorithm for Surge Oscillation of Mooring Vessel System (슈퍼트위스팅 슬라이딩모드를 이용한 선박계류시스템의 동적제어)

  • Lee, Sang-Do;Lee, Bo-Kyeong;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.953-959
    • /
    • 2018
  • This paper deals with controlling surge oscillations of a mooring vessel system under large external disturbances such as wind, waves and currents. A control synthesis based on Sliding Mode Control (SMC) with a Super-Twisting Algorithm (STA) has been applied to suppress nonlinear surge oscillations of a two-point mooring system. Despite the advantages of robustness against parameter uncertainties and disturbances for SMC, chattering is the main drawback for implementing sliding mode controllers. First-order SMC shows convergence within the desired level of accuracy, in which chattering is the main obstacle related to the destructive phenomenon. Alternatively, STA completely eliminates chattering phenomenon with high accuracy even for large disturbances. SMC based on STA is an effective tool for the motion control of a nonlinear mooring system because it avoids the chattering problems of a first-order sliding mode controller. In addition, the error trajectories of controlled mooring systems implemented by means of STA form in the bounded region. Finally, the control gain effect of STA can be observed in sliding surface and position trajectory errors.

A Study on Dynamic Positioning System IMO class upgrade requirements (Dynamic Positioning System의 IMO Class 변경 요건에 관한 연구)

  • Chae, Chong-Ju
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.165-172
    • /
    • 2015
  • The class of Dynamic Positioning System is divided in 3 classes depending on its redundancy and reliability according to IMO and classification society. There are 3 DP classes such as DP Class 1, 2 and 3 according to IMO MSC/Circ. 645. Higher DP class vessel has higher reliability, since redundancy concept is applied to the DP vessel depending on its DP class and can operate more safely. There are not enough information about DP class notation, which are needed when a company builds a new or buys second hand DP vessel or modifies DP classes, even the Korean shipyard is building a lot of DP vessels now. Also, the practical case of DP vessel modification, which had been done in Korea, to meet DP notation of IMO and classification society, will be helpful for DP vessel modification and sales industry development in Korea as a new business. As such this research identified what kind of requirements need to be taken into account to be from DP class 1 to DP class 2. The real DP class modification case is used to identify the requirements of DP class upgrade. Through the FMEA the redundancy concept on power system, thruster system and DP control system need to apply for DP class upgrade. The power system have to keep its DP function even if just a single fault happens on the generator or switchboard. Also, the PMS is required to monitor and control power system. Ship's Surge, Sway and Yaw movements can be controlled by the remaining thruster system after a single thruster fails. Lastly, multiple installation of PRS, sensors and DP control system are required to keep DP ability after a single fault on the DP control systems.

Modeling and controller design of crabbing motion for auto-berthing (선박 자동접안을 위한 순수 횡 이동 모델링 및 제어기 설계)

  • Park, Jong-Yong;Kim, Nakwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.56-64
    • /
    • 2013
  • Crabbing motion is the pure sway motion of a ship without surge velocity. Thus, it can be applied to a berthing operation. Crabbing motion is induced by a peculiar operation method called the push-pull mode. The push-pull mode is induced by using a combination of the main propeller and side thruster. Two propellers generating the same amounts of thrust and rotating in opposite directions produce some yawing moment on a vessel but do not induce longitudinal motion. With the additional operation of side thrusters, the push-pull mode is used to induce a large amount of lateral force. In this paper, three-degree-of-freedom equations of motion such as for the surge, sway, and yaw are constructed for the crabbing motion. Based on these equations of motion, a feedback linearization control method is applied to auto-berthing control for a twin-screw ship with side thrusters. The controller can deal with the nonlinearity of a system, which is present in the berthing maneuver of a twin screw ship. A simulation of the auto-berthing of a ship is performed to validate the performance of the designed controller.

Dynamical Analysis of the Mooring Vessel System Under Surge Excitations (선박 계류시스템의 종방향 외력하의 비선형 동적거동 해석)

  • Lee, Sang-Do;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.140-145
    • /
    • 2018
  • This paper deals with the dynamical analysis of a two-point mooring vessel under surge excitations. The characteristics of nonlinear behaviors are investigated completely including bifurcation and limit cycle according to particular input parameter changes. The strong nonlinearity of the mooring system is mainly caused by linear and cubic terms of restoring force. The numerical simulation is performed based on the fourth order Runge-Kutta algorithm. The bifurcation diagram and several instability phenomena are observed clearly by varying amplitudes as well as frequencies of surge excitations. Stable periodic solutions, called the periodic windows, can be obtained in succession between chaotic clouds of dots in case of frequency ${\omega}=0.4rad/s$. In addition, the chaotic region is unexpectedly increased when external forcing amplitude exceeds 1.0 with the angular frequency of ${\omega}=0.7rad/s$. Compared to the cases for ${\omega}=0.4$, 0.7rad/s, the region of chaotic behavior becomes more fragile than in the case of ${\omega}=1.0rad/s$. Finally, various types of steady states including sub-harmonic motion, limit cycle, and symmetry breaking phenomenon are observed in the two-point mooring system at each parameter value.

Behavior Analysis and Control of a Moored Training Ship in an Exclusive Wharf (전용부두 계류중인 실습선의 선체거동 해석 및 제어에 관한 연구)

  • Cho, Ik-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.139-145
    • /
    • 2017
  • Recently, gusts, typhoon and tsunamis have been occurring more frequently around the world. In such an emergency situation, a moored vessel can be used to predict and analyze other vessel behavior, but if the mooring system is destroyed, marine casualties can occur. Therefore, it is necessary to determine quantitatively whether a vessel should be kept in the harbour or evacuate. In this study, moored ship safety in an exclusive wharf according to swell effects on motion and mooring load have been investigated using numerical simulations. The maximum tension exerted on mooring lines exceeded the Safety Working Load for intervals 12 and 15 seconds. The maximum bollard force also exceeded 35 tons (allowable force) in all evaluation cases. The surge motion criteria result for safe working conditions exceeded 3 meters more than the wave period 12 seconds with a wind speed of 25 knots. As a result, a risk rating matrix (risk category- very high risk, high risk and moderate risk) was developed with reference to major external forces such as wind force, wave height and wave periods to provide criteria for determining the control of capabilities of mooring systems to prevent accidents.

Experimental Investigation of the Motion Responses of a Moored Twin-Barge Model in Regular Waves in a Square Tank

  • Nguyen, Van Minh;Jeon, Myung-Jun;Yoon, Hyeon-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.42 no.2
    • /
    • pp.127-136
    • /
    • 2018
  • The motion response of floating structures is of significant concern in marine engineering. Floating structures can be disturbed by waves, winds, and currents that create undesirable motions of the vessel, therefore causing challenges to its operation. For a floating structure, mooring lines are provided in order to maintain its position; these should also produce a restoring force when the vessel is displaced. Therefore, it is important to investigate the tension of mooring lines and the motion responses of a twin barge when moored to guarantee the safety of the barge during its operation. It is essential to precisely identify the characteristics of the motion responses of a moored barge under different loading conditions. In this study, the motion responses of a moored twin barge were measured in regular waves of seven different wave directions. The experiment was performed with regular waves with different wavelengths and wave directions in order to estimate the twin-barge motions and the tension of the mooring line. In addition, the motion components of roll, pitch, and heave are completely free. In contrast, the surge, sway, and yaw components are fixed. In the succeeding step, a time-domain analysis is carried out in order to obtain the responses of the structure when moored. As a result, the Response Amplitude Operator (RAO) motion value was estimated for different wave directions. The results of the experiment show that the motion components of the twin barge have a significant effect on the tension of the mooring lines.

Waterhammer in the Transmission Pipeline with an Air Chamber (에어챔버가 설치된 송수관로에서의 수격현상)

  • Kim, Gyeong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.177-183
    • /
    • 2002
  • The field tests on the waterhammer were carried out in the pump pipeline system with an air chamber. The effects of the input variables and the design parameters for the air chamber were investigated by both the numerical calculations and the experiments. Because the waterhammer problems as a result of the pump power failure were the most important, these situations were carefully studied. Among the input variables used in the waterhammer analysis, the polytropic exponent, the discharge coefficient and the wavespeed had influence on the simulated results in that order, and were calibrated in comparison with the experimental results. As the initial air volume in a vessel increased, the period of waterhammer increased and the pressure variation decreased, resulting from the reduction of the rate of pressure change in the air chamber. Using smaller orifice in the bypass pipe, the pressure rise was suppressed in some degree and the pressure surge was dissipated more rapidly as time passed. The simulations were in fairly good agreement with the measured values until 1∼2 periods of waterhammer. Not only the maximum and minimum pressures in the pipe1ine but also those occurring times were reasonably predicted. The computer program developed in this study will be useful in designing the optimum parameters of an air chamber for the real pump pipeline system.

Design of Truncated Mooring Line Model in KRISO's Deepwater Ocean Engineering Basin

  • Jung, Hyun-Woo;Kim, Yun-Ho;Cho, Seok-Kyu;Hwang, Sung-Chul;Sung, Hong-Gun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.227-238
    • /
    • 2015
  • The present work was an attempt to investigate the applicability of truncated mooring systems to KRISO's deep ocean engineering basin (DOEB) with ratios of 1:100, 1:60, and 1:50. The depth of the DOEB is 15 m. Therefore, the corresponding truncated depths for this study were equal to 1500 m, 900 m, and 750 m. The investigation focused on both the static and dynamic characteristics of the mooring system. It was shown, in a static pull-out test, that the restoring force of a FPSO vessel could be modified to a good level of agreement for all three truncation cases. However, when the radius of the mooring site was reduced according to the truncation factor, the surge motion response during a free-decay test showed a significant difference from the full-depth model. However, the reduction of this discrepancy was achieved by increasing the radius up to its maximum possible value while considering the size of the DOEB. Especially, in terms of the time period, the difference was reduced from 24.0 to 5.3 s for a truncation ratio of 1:100, 54.1 to 8.6 s for a truncation ratio of 1:60, and 31.7 to 3.9 s for a truncation ratio of 1:50. As a result, the study verified the applicability of the truncated mooring system to the DOEB, and therefore it could represent the full-depth mooring system relatively well in terms of the static and dynamic conditions.

Dynamic Response of Tension Leg Platform (Tension Leg Platform의 동적응답에 관한 연구)

  • Yeo, Woon Kwang;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • The tension leg platform (TLP) is a kind of compliant structures, and is also a type of moored stable platform with a buoyancy exceeding the weight because of having tensioned vertical anchor cables. In this paper, among the various kinds of tension leg structures, Deep Oil Technology (DOT) TLP was analyzed because it has large-displacement portions of the immersed surface such as vertical corner pontoons and small-diameter elongated members such as cross-bracing. It also has results of hydraulic model tests, comparable with theorectical analysis. Because of the vertical axes of symmetry in the three vertical buoyant legs and because there are no larger horizontal buoyant members between these three vertical members, it was decided to develop a numerical algorithm which would predict the dynamic response of the DOT TLP using the previously developed numerical algorithm Floating Vessel Response Simulation (FVRS) for vertically axisymmetric bodies of revolution. In addition, a linearized hydroelastic Morison equation subroutine would be developed to account for the hydrodynamic pressure forces on the small member cross bracing. Interaction between the large buoyant members or small member cross bracings is considered to be negligible and is not included in the analysis. The dynamic response of the DOT TLP in the surge mode is compared with the results of the TLP algorithm for various combinations of diffraction and Morison forces and moments. The results which include the Morison equation are better than the results for diffraction only. This is because the vertically axisymmetric buoyant members are only marginally large enough to consider diffractions effects. The prototype TLP results are expected to be more inertially dominated.

  • PDF