• Title/Summary/Keyword: Surficial Aquifer

Search Result 5, Processing Time 0.025 seconds

Characterization of Nitrate Contamination and Hydrogeochemistry of Groundwater in an Agricultural Area of Northeastern Hongseong (홍성 북동부 농촌 지역 지하수의 질산성 질소 오염과 수리지구화학적 특성)

  • Ki, Min-Gyu;Koh, Dong-Chan;Yoon, Heesung;Kim, Hyun-Su
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.33-51
    • /
    • 2013
  • Spatial and temporal characteristics of nitrate contamination and hydrogeochemical parameters were investigated for springs and surficial and bedrock groundwaters in northeastern part of Hongseong. Two field investigations were conducted at dry and wet seasons in 2011 for 120 sites including measurement of field parameters with chemical analyses of major dissolved constituents. Nitrate concentrations were at background levels in springs while 45% of bedrock groundwater and 49% of surficial groundwater exceeded the drinking water standard of nitrate (10 mg/L as $NO_3$-N). The difference in nitrate concentrations between surficial and bedrock groundwater was statistically insignificant. Cumulative frequency distribution of nitrate concentrations revealed two inflection points of 2 and 16 mg/L as $NO_3$-N. Correlation analysis of hydrogeochemical parameters showed that nitrate had higher correlations with Sr, Mg, Cl, Na, and Ca, in surficial groundwater in both dry and wet season. In contrast, nitrate had much weaker correlations with other hydrogeochemical parameters in bedrock groundwater compared to surficial groundwater and had significant correlations only in wet season. Temporally, nitrate and chloride concentrations decreased and dissolved oxygen (DO) increased from dry season to wet season, which indicates that increased recharge during the wet season affected groundwater quality. Aerobic conditions were predominant for both surficial and bedrock groundwater indicating low natural attenuation potential of nitrate in the aquifers of the study area.

Distribution of Coastal Ground Water Discharge from Surficial Aquifers of Major River Districts (권역별 충적층 지하수의 해안 유출량 분포)

  • Han, Soo Young;Hong, Sung Hun;Park, Namsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.1-6
    • /
    • 2006
  • Amount of coastal ground water discharge(CGD) of surficial aquifer via coastlines of Nakdong River watershed, Seomjin River watershed, Youngsan River watershed and Keum River watershed is estimated. Compared to other major hydrological components, such as evapo-transpiration and river discharge, CGD is not so large in the amount. However, it is important since coastal ground water can be developed relatively free of environmental impact on downstream area and since most of coastal areas currently suffers water shortage. Regional groundwater investigation data and assessment based on Darcy's law are used for estimating coastal groundwater discharge. In this work the amount of CGD across the coastlines of the four rivers is estimated as 1.8 billion cubic meter per year and that is about 2.3 percentage of total amount of annual precipitation. Nakdong River watershed is most appropriate region in view of developing groundwater.

Analytical Model of Salt Budget in the Upper Indian River Lagoon, Florida USA

  • Kim, Young-Taeg
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.33-42
    • /
    • 2004
  • Effect of freshwater discharge on the long-term salt balance in the Northern and Central Indian River Lagoon (IRL) is successfully simulated by a new analytical solution to a water balance-based one-dimensional salt conservation equation. Sensitivity tests show that the salinity levels drop abruptly even during the dry season (November to May) due to the high surface runoff discharge caused by tropical storms, depressions, and passage of cold fronts. Increasing surface runoff and direct precipitation has risen by ten times, lowering the salinity level down to 12psu in the Northern Central zone, and to 17 psu in the Northern zone. However, the salinity level in the Southern Central zone has decreased to 25 psu. High sensitivity of the Northern Central zone to freshwater discharge can be partially explained by a rapid urbanization in this zone. During the dry season, less sensitivity of the Southern Central zone to the increased surface runoff is attributed to the proximity of the zone to the Sebastian Inlet and a strong diffusion condition possibly resulting from the seawater intrusion to the surficial aquifer at the Vero Beach. During the wet season, however, the whole study area is highly sensitive to freshwater discharge due to the weak diffusion conditions. High sensitivity of the IRL to the given diffusion conditions guarantees that the fresh-water release occurs during strong wind conditions, achieving both flood control in the drainage basin and a proper salinity regime in the IRL.

Hydrogeochemical study of a watershed in Pocheon area: controls of water chemistry

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Chae, Soo-Ho;Jean, Jong-Wook;Lee, Jeong-Ho;Kweon, Hae-Woo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.121-121
    • /
    • 2004
  • The groundwater in the Pocheon area occurs from both a fractured bedrock aquifer in igneous and metamorphic rocks and an alluvial aquifer with a thickness of <50 m, and forms a major source of domestic and agricultural water supply. In this study, we performed a hydrogeochemical study in order to identify the control of geochemical processes on groundwater quality. For this study, groundwater level and physicochemical parameters (EC, Eh, pH, alkalinity) were monitored once a month from a total of 150 groundwater wells between June 2003 to August 2004. A total of 153 water samples (13 surface water, 66 alluvial groundwater, 74 bedrock groundwater) were also collected and analyzed in February 2004. Groundwater chemistry in the study area is very complex, depending on a number of major factors such as geology, degree of chemical weathering, and quality of recharge water. Hydrochemical reactions such as the leaching of surficial and near-solace soil salts, dissolution of calcite, cation exchange, and weathering of silicate minerals are proposed to explain the chemistry of natural groundwater. Alluvial groundwaters locally have very high TDS concentrations, which are characterized by their chloride(nitrate)-sulfate-bicabonate facies and low Na/Cl ratio. Their grondwater levels are highly fluctuated according to rainfall event. We suggest that high nitrate content and salinity in such alluvial groundwaters originates from the local recharge of sewage effluents and/or fertilizers. Likewise, high concentrations of nitrate were also locally observed in some bedrock groundwaters, suggesting their effect of anthropogenic contamination. This is possibly due to the bypass flow taking place through macropores. Tile degree of the weathering of silicate minerals seems to be a major control of the distribution of major cations (sodium, calcium, magnesium, potassium) in bedrock groundwaters, which show a general increase with increasing depth of wells. Thermodynamic interpretation of groundwater chemistry shows that the groundwater in the study area is in chemical equilibrium with kaolinite and Na-montmorillonite, which indicates that weathering of plagioclase to those minerals is a major control of hydrochemistry of bedrock groundwater. The interpretation of the molar ratios among major ions, as well as the mass balance calculation, also indicates the role of both dissolution/precipitation of calcite and Ca-Na cationic exchange as bedrock groundwaters evolves progressively.

  • PDF

Biostability Characterization in a Full-scale Nanofiltration Water Treatment System (대규모 나노여과 정수처리 시스템에서의 생물학적 안정성에 관한 연구)

  • Hong, Seung-Kwan;Escobar, Isabel C.;Cho, Jae-Weon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.158-162
    • /
    • 2005
  • The objective of this study was to assess the assimilable organic carbon (AOC) in processing water, a measurement of biostability, at several stages of a full-scale nanofiltration (NF) water treatment plant. The NF membrane plant investigated was a $45,400\;m^3$/day (12 mgd) water softening facility at Plantation City in southern Florida, which utilized an organic rich groundwater (dissolved organic carbon (DOC) = 17.6 mg/L) originated from a surficial aquifer. The average AOC concentration of raw feed water was estimated at 158 g/L acetate-C. After pretreatment(acid and antiscalant addition), AOC levels increased by 12.7%, suggesting that pretreatment chemicals used to control scaling may deteriorate feed water biostability. The results also demonstrated that nanofiltration was capable of effectively removing 63.4% of AOC and 94.8% of DOC from the raw water. AOC rejection in stage 1 (${\approx}\;68%$) was slightly higher than that of stage 2 (${\approx}\;58%$) indicating that AOC was removed less at the solution environment (i.e. low pH, high ionic strength and high hardness), which was often created in the $2^{nd}$ stage of full-scale membrane plants due to pretreatment (acid addition) and high recovery operation.