• Title/Summary/Keyword: Surface-water irrigation

Search Result 213, Processing Time 0.029 seconds

Water Surface Profile Computations at Irrigation Channel Networks (관개용수로에서의 수면곡선 계산)

  • 김현준;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.114-120
    • /
    • 1988
  • A water surface profile computation model using a standard step procedure was developed for gradually varied flow at an irrigation channel network. Flow characteristics ab Banweol district near Suweon were field monitored during irrigation periol of 1987. The model was applied to the main system at the district and the simulation results were compared to the field data. The results are sumrnarized as follows ; 1. The simulated water surface profiles from the model were in good agreement with the measured water surface profiles at different flow rates. 2. The model applicability for defining a stage-discharge relationship at a channel reach was demonstrated with reasonable accuracy when water stage and friction factor were given. 3. The roughness coefficient was found to be a major factor sigrificantly affecting computed water surface profile among a few physical input parameters for the model.

  • PDF

Repeated Use of Irrigation Water for Paddy Fields in Jedae Cheon Basin (堤大川 流域 畓用水의 反復利用)

  • Ahn, Se-Young;Lee, Keun-Hoo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.3
    • /
    • pp.63-72
    • /
    • 1991
  • To investigate the status of repeated use of irrigation water observations of irrigation water were made on dry days during the irrigation periods in 1986 and 1987 crop year. The total area of studied site is 1,441 ha. The site is a major portion of Jedaecheon basin which is located in Bubuk-myeon, Miryang-gun, Gyeongnam Province. The studied area was subdivided into six small blocks. The inflow and outflow of daily irrigation water for these subdivided blocks were checked. Obtained results are as follows : 1. The over all possible ratio of the repeated use of irrigation water in studied area was 48.3%, which means that approximately one half of the surface flow was possible to be repeatedly used as irrigation water in this area. 2. The ratio of repeated use of irrigation water in sloppy paddy area was 4.29%, whereas, the ratio was 21.97% in the plain area. The average figure of this ratio over studied area was estimated as 17.43%.

  • PDF

Surface Drainage Simulation Model for Irrigation Districts Composed of Paddy and Protected Cultivation (복합영농 관개지구의 배수량 모의 모형의 개발)

  • Song, Jung-Hun;Kang, Moon-Seong;Song, Inhong;Hwang, Soon-Ho;Park, Jihoon;Ahn, Ji-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.63-73
    • /
    • 2013
  • The objectives of this study were to develop a hydrologic simulation model to estimate surface drainage for irrigation districts consisting of paddy and protected cultivation, and to evaluate the applicability of the developed model. The model consists of three sub-models; agricultural supply, paddy block drainage, and protected cultivation runoff. The model simulates daily total drainage as the sum of paddy field drainage, irrigation canal drainage, and protected cultivation runoff at the outlets of the irrigation districts. The agricultural supply sub-model was formulated considering crop water requirement for growing seasons and agricultural water management loss. Agricultural supply was calculated for use as input data for the paddy block sub-model. The paddy block drainage sub-model simulates paddy field drainage based on water balance, and irrigation canal drainage as a fraction of agricultural supply. Protected cultivation runoff is calculated based on NRCS (Natural Resources Conservation Service) curve number method. The Idong reservoir irrigation district was selected for surface drainage monitoring and model verification. The parameters of model were calibrated using a trial and error technique, and validated with the measured data from the study site. The model can be a useful tool to estimate surface drainage for irrigated districts consisting of paddy and protected cultivation.

The Comparison of Water Budget and Nutrient Loading from Paddy Field According to the Irrigation Methods (관개방법에 따른 논에서의 수문 및 수질특성에 미치는 영향)

  • Jeon, Ji-Hong;Choi, Jin-Kyu;Yoon, Kwang-Sik;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.118-127
    • /
    • 2005
  • The comparison of water balance and nutrient loading from paddy field with different irrigation management were carried out during 1999 ${\sim}$ 2002 at two different sites; one is irrigated with groundwater and the other is irrigated with surface water. For the surface water irrigated paddy field, irrigation was performed continuously during growing season. Whereas, initial irrigation with groundwater was applied during initial growing season, and the ponded water depth was maintained by natural precipitation since initial irrigation. The runoff frequency of groundwater irrigated paddy field was less than that of surface water irrigated paddy field. The nutrient concentration of ponded water was high by fertilization at early cultural periods, so reducing surface drainage during fertilization period can reduce nutrient loading from paddy fields. Amount of irrigation water to surface water irrigated paddy field was higher than to groundwater irrigated paddy field and evapotranspiration was similar because it is influenced by climate. Overall input in and output from paddy field irrigated with goundwater were less than that with surface water. This study indicate that efficient water management can reduce surface drainage outflow, save water, and protect water quality. It might be important BMPs for paddy field.

Effects of fended-Water Depth and Reclaimed Wastewater Irrigation on Paddy Rice Culture (담수심과 오수처리수 관개가 벼재배에 미치는 영향)

  • 윤춘경;황하선;정광욱;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.55-65
    • /
    • 2003
  • Pilot study was conducted to examine the effects of ponded-water depth and reclaimed wastewater irrigation on paddy rice culture. For the ponded-water depth effect, three treatments of shallow, traditional, and deep water depths were applied, and each treatment was triplicated. The irrigation water for the treatment pots was an effluent from constructed wetland system for sewage treatment, while the control pot was irrigated with tap water kept traditional ponded-water depth. Irrigation water quantity varied with ponded-water depth as expected and drainage water quantity also varied similarly, which implies that shallow irrigation might save irrigation water and also reduce environmental impacts on downstream water quality. Rice growth and production were not significantly affected by ponded-water depth within the experimental condition, instead there was an indication of increased production in shallow and deep ponded-water depths compared to the traditional practice. Raising drainage outlet to the adequate height in paddy dike might be beneficial to save water resources within the paddy field. There was no adverse effect observed in reclaimed wastewater irrigation on the rice production, and mean yield was even greater than the control pots with tap water irrigation although statistically not significant. Water-saving irrigation by shallow ponded-water depth, raising the outlet height in diked rice paddy fields, minimizing forced surface drainage by well-planned irrigation, and reclaimed wastewater irrigation are suggested to save water and protect water quality. However, deviation from traditional farming practices might affect rice growth in long term, and therefore, further investigations are recommended before full scale application.

Nutrient Behavior at Paddy Field Area with Large-Scaled Plots during Irrigation Periods (관개기 대구획 광역논에서의 영양물질 거동)

  • Oh, Seung-Young;Kim, Jin-Soo;Jung, Gu-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1254-1258
    • /
    • 2005
  • Net outflow flux and unit load of pollutants were investigated at a paddy fields area(Soro-ri) with large-scaled plots on loam soil during irrigation seasons of $2001\~2003$. Water samples were collected, and inflow and outflow were .measured at $5\~10$ day intervals during non-storm periods and at $2\~6$ hours intervals during storm events. The average concentration of TP in percolated water was much smaller than that in irrigation and surface outflow water likely due to phosphorus absorption capacity of paddy soils. Net outflow flux in study area was significantly correlated with rainfall and surface outflow discharge. Nutrient flux from Paddy fields can be abated by reduction in outflow surface discharge.

  • PDF

Effects of the irrigation Rate on Wetted Patterns in Sandy Loam Soil Under Trickle irrigation Condition (점적관개에서 관개율이 Sandy Loam토양의 습윤양상에 미치는 영향)

  • 김철수;이근후
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.104-115
    • /
    • 1989
  • In an effort to clarify the wetted patterns of sandy loam soil under trickle irrigation conditions, the distance of wetted zone, infiltration capacity and soil wetted patterns, etc. were measured by gypsum block as soil moisture sensor located every 5 cm vertically and horizontaly in the soil bin under the such conditions as a). irrigation rates set to 2, 4, 6, 8 liters per hour b). total amount of water applied fixed to 14.62 liters per soil bin c) the hearing force of soil measured by plate penetrometer ranging from 1.04 to 1.22kg/cm$_2$ The results can be summarized as follows ; 1. The wetted distance in horizontal direction(H), the wetted distance in vertical direction(D), the horizontal infiltration capacity (iH) and the vertical infiltration capacity(in)could by explained as a function of time t. 2. The horizontal wetted distance (H) is explained by an exponetial function H= a$.$ t where b was found ranging from 021 to 026 under surface trickle irrigation, which was considered a lotlower than the classical value of 0.5 and these measurements were indifferent to the increasing irrigation rates. 3. As for the surface trickle irrigation where horizontal infiltration capacity(iH) is explained as iH = A $.$ t h, the coefficient A increases with respect to irrigation rates within the limits of 0.89~1.34. 4. In terms of surface trickle irrigation of the ratio of Dm Which is maximum vertical wetted distance to Hm, which is maximum horizontal wetted distance, found to be within range of 1.0 to 1.21. It was also noted that the value of Dm decreses when irrigation rates increases while the value of Hm changes the opposite direction. 5. The optimum location of sensors from emitter for surface trickle irrigation should he inside of hemisphere whose lateral radius is 28~30cm long and vertical radius is 10~12cm long. The distance between emitters should be within 60cm long. 6. In the study of vertical wetted distance( D) where D= a $.$ tb, the exponential coefficient b ranged from 0.61 to 0.75 in surface trickle irrigation, and from 0A9 to 0.68 for subsurface trickle irrigation. These measurements showed an increasing tendency to with respect to irrigation rates. 7. In case of vertical infiltration capacity( in), where iD= A $.$ t 1-h, the coefficient A for surface trickle irrigation found to be within range of 0.16 to 0.19 and did not show any relationships with varying degree of irrigation rates. However, the coefficient was varying from 0.09 to 0.22 and showed a tendency to increase vis-a-vis irrigation rates for subsurface trickle irrigation, in contrast. 8. In the observation of subsurface trickle irrigation, it was found that Dm/Hm ratio was within 1.52 to 1.91 and showed a decreasing tendency with respect to increasing rates of irrigation. 9. The location of sensors for subsurface trickle irrigation follows same pattern as above, with vertical distance from emitter being 10~17cm long and horizontal 22~25cm long. The location of emitter should be 50 cm. 10.The relationship between VS which is the volume of wetted soil and Q which is the total amount of water when soil is reached field capacity could be explained as VS= 2.914Q0.91and the irrigation rates showed no impacts on the above relationship.

  • PDF

Characteristics of Irrigation Return Flow in a Reservoir Irrigated District (저수지 관개지구의 농업용수 회귀 특성 분석)

  • Song, Jung Hun;Song, Inhong;Kim, Jin-Taek;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.69-78
    • /
    • 2015
  • The objective of this study was to investigate characteristics of irrigation return flow from paddy block in a reservoir irrigated district during growing seasons. The irrigation return flow was divided into three parts, quick return flow from irrigation canal (RFI), quick return flow from drainage canal (RFD), and delayed return flow (DRF). The RFI was calculated from water level and stage-discharge relationships at the ends of the irrigation canals. The DRF was estimated using measured infiltration amount from paddy fields of the irrigated district. A combined monitoring and modeling method was used to estimate the RFD by subtracting surface runoff from surface drainage. The paddy block irrigated from the Idong reservoir was selected to study the irrigation return flow components. The results showed that daily agricultural water supply (AWS), the RFI, and the RFD were $27.4mm\;day^{-1}$, $4.9mm\;day^{-1}$, and $19.8mm\;day^{-1}$, respectively in May, which were greater than other months (p<0.05). The return flow ratio of the RFI and the RFD were the greatest in July (34.6%) and May (72.3%), respectively. The daily AWS was closely correlated with the RFD (correlation coefficients of 0.76~0.86) in except for July with, while correlation coefficient with the RFI were 0.56 and 0.42 in June and July, respectively (p<0.01). The total irrigation return flow was 1,965 mm in 2011, and 1,588 mm in 2012, resulting in total return flow ratio of 84.6% and 79.1%, respectively. This results indicate that substantial amounts of agricultural water were returned to streams as irrigation return flow. Thus, irrigation return flow should be fully considered into the agricultural water resources planning in Korea.

Estimation of Irrigation Return Flow on Agricultural Watershed in Madun Reservoir (마둔저수지 농업유역의 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;Bang, Na-Kyoung;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.85-96
    • /
    • 2021
  • Irrigation return flow is defined as the excess of irrigation water that is not evapotranspirated by direct surface drainage, and which returns to an aquifer. It is important to quantitatively estimate the irrigation return flow of the water cycle in an agricultural watershed. However, the previous studies on irrigation return flow rates are limitations in quantifying the return flow rate by region. Therefore, simulating irrigation return flow by accounting for various water loss rates derived from agricultural practices is necessary while the hydrologic and hydraulic modeling of cultivated canal-irrigated watersheds. In this study, the irrigation return flow rate of agricultural water, especially for the entire agricultural watershed, was estimated using the SWMM (Storm Water Management Model) module from 2010 to 2019 for the Madun reservoir located in Anseong, Gyeonggi-do. The results of SWMM simulation and water balance analysis estimated irrigation return flow rate. The estimated average annual irrigation return flow ratio during the period from 2010 to 2019 was approximately 55.3% of the annual irrigation amounts of which 35.9% was rapid return flow and 19.4% was delayed return flow. Based on these results, the hydrologic and hydraulic modeling approach can provide a valuable approach for estimating the irrigation return flow under different hydrological and water management conditions.

Evaluating efficiency of automatic surface irrigation for soybean production

  • Jung, Ki-yuol;Lee, Sang-hun;Chun, Hyen-chung;Choi, Young-dae;Kang, Hang-won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.252-252
    • /
    • 2017
  • Nowadays water shortage is becoming one of the biggest problems in the Korea. Many different methods are developed for conservation of water. Soil water management has become the most indispensable factor for augmenting the crop productivity especially on soybean (Glycine max L.) because of their high susceptibility to both water stress and water logging at various growth stages. The farmers have been using irrigation techniques through manual control which farmers irrigate lands at regular intervals. Automatic irrigation systems are convenient, especially for those who need to travel. If automatic irrigation systems are installed and programmed properly, they can even save you money and help in water conservation. Automatic irrigation systems can be programmed to provide automatic irrigation to the plants which helps in saving money and water and to discharge more precise amounts of water in a targeted area, which promotes water conservation. The objective of this study was to determine the possible effect of automatic irrigation systems based on soil moisture on soybean growth. This experiment was conducted on an upland field with sandy loam soils in Department of Southern Area Crop, NICS, RDA. The study had three different irrigation methods; sprinkle irrigation (SI), surface drip irrigation (SDI) and fountain irrigation (FI). SI was installed at spacing of $7{\times}7m$ and $1.8m^3/hr$ as square for per irrigation plot, a lateral pipe of SDI was laid down to 1.2 m row spacing with $2.3L\;h^{-1}$ discharge rate, the distance between laterals was 20 cm spacing between drippers and FI was laid down in 3m interval as square for per irrigation plot. Soybean (Daewon) cultivar was sown in the June $20^{th}$, 2016, planted in 2 rows of apart in 1.2 m wide rows and distance between hills was 20 cm. All agronomic practices were done as the recommended cultivation. This automatic irrigation system had valves to turn irrigation on/off easily by automated controller, solenoids and moisture sensor which were set the reference level as available soil moisture levels of 30% at 10cm depth. The efficiency of applied irrigation was obtained by dividing the total water stored in the effective root zone to the applied irrigation water. Results showed that seasonal applied irrigation water amounts were $60.4ton\;10a^{-1}$ (SI), $47.3ton\;10a^{-1}$ (SDI) and $92.6 ton\;10a^{-1}$ (FI), respectively. The most significant advantage of SDI system was that water was supplied near the root zone of plants drip by drip. This system saved a large quantity of water by 27.5% and 95.6% compared to SI, FI system. The average soybean yield was significantly affected by different irrigation methods. The soybean yield by different irrigation methods were $309.7kg\;10a^{-1}$ from SDI $282.2kg\;10a^{-1}$ from SI, $289.4kg\;10a^{-1}$ from FI, and $206.3kg\;10a^{-1}$ from control, respectively. SDI resulted in increase of soybean yield by 50.1%, 7.0% 9.8% compared to non-irrigation (control), FI and SI, respectively. Therefore, the automatic irrigation system supplied water only when the soil moisture in the soil went below the reference. Due to the direct transfer of water to the roots water conservation took place and also helped to maintain the moisture to soil ratio at the root zone constant. Thus the system is efficient and compatible to changing environment. The automatic irrigation system provides with several benefits and can operate with less manpower. In conclusion, improving automatic irrigation system can contribute greatly to reducing production costs of crops and making the industry more competitive and sustainable.

  • PDF