• Title/Summary/Keyword: Surface-to-Surface Effectiveness

Search Result 1,237, Processing Time 0.026 seconds

Nonlinear Discrete-Time Reconfigurable Flight Control Systems Using Neural Networks (신경회로망을 이용한 이산 비선형 재형상 비행제어시스템)

  • 신동호;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.112-124
    • /
    • 2004
  • A neural network based adaptive reconfigurable flight controller is presented for a class of discrete-time nonlinear flight systems in the presence of variations of aerodynamic coefficients and control effectiveness decrease caused by control surface damage. The proposed adaptive nonlinear controller is developed making use of the backstepping technique for the angle of attack, sideslip angle, and bank angle command following without two time separation assumption. Feedforward multilayer neural networks are implemented to guarantee reconfigurability for control surface damage as well as robustness to the aerodynamic uncertainties. The main feature of the proposed controller is that the adaptive controller is developed under the assumption that all of the nonlinear functions of the discrete-time flight system are not known accurately, whereas most previous works on flight system applications even in continuous time assume that only the nonlinear functions of fast dynamics are unknown. Neural networks learn through the recursive weight update rules that are derived from the discrete-time version of Lyapunov control theory. The boundness of the error states and neural networks weight estimation errors is also investigated by the discrete-time Lyapunov derivatives analysis. To show the effectiveness of the proposed control law, the approach is i]lustrated by applying to the nonlinear dynamic model of the high performance aircraft.

Research And Design Of Guidance And Control System For Unmanned Surface Vessels

  • Nhat Duy Nguyen
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.31-40
    • /
    • 2023
  • This asymed drone controller is indispensable for two components: Guidance and Controller. In which the Ministry of Guidance will receive waypoints from which to form an orbit then combine the data with the current location of the vessel, thereby calculating and also supplying the controller to drive the vehicle to follow the outlined trajectory. This article will use the Line Of Sight (LOS) algorithm to design the Guidance and Controller sets. The result as well as the effectiveness of the controller will be shown through matlab/SIMULINK simulation.

The Improvement of Surface Roughness of Marine Propeller by Continuous Control of Cutter Posture in 5-Axis Machining (공구자세의 연속제어를 통한 선박용 프로펠러의 5축 가공 표면조도의 개선)

  • Son, Hwang-Jin;Lim, Eun-Seong;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.27-33
    • /
    • 2012
  • A marine propeller is designed for preventing cavitation priority. Cavitation is a phenomenon which is defined as the vibration or noise by dropping the pressure on the high-speed rotation of the propeller. There has to be a enough thrust on the low-speed rotation for preventing cavitation. Thus, it has to be considered in the increasing of the number of blade and the angle of wing to design the propeller. In addition, flow resistance will be increasing by narrowing the width between blades. So high quality surface roughness of the hub to minimize flow resistance is required. Interference problems with tool and neighboring surfaces often take place from this kind of characteristics of the propeller. During 5-Axis machining of these propellers, the excessive local interference avoidance, necessary to avoid interference, leads to inconsistency of cutter posture, low quality of machined surface. Therefore, in order to increase the surface quality, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. This study, by using a MC-space algorithm for interference avoidance and a MB-spline algorithm for continuous control, is intended to create a 5-Axis machining tool path with excellent surface quality. Also, an effectiveness is confirmed through a verification manufacturing.

Identification of native defects on the Te- and Bi-doped Bi2Te3 surface

  • Dugerjav, Otgonbayar;Duvjir, Ganbat;Kim, Jinsu;Lee, Hyun-Seong;Park, Minkyu;Kim, Yong-Sung;Jung, Myung-Wha;Phark, Soo-hyon;Hwang, Chanyong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.170.1-170.1
    • /
    • 2016
  • $Bi_2Te_3$ has long been studied for its excellent thermoelectric characteristics. Recently, this material has been known as a topological insulator (TI). The surface states within the bulk band gap of a TI, which are protected by the time reversal symmetry, contribute to the conduction at the surface, while the bulk is in insulating state. In contrast to the bulk defects tuning the chemical potential to the Dirac energy, the native defects near the surface are expected not to change the shape of the Fermi surface and the related spin structure. Using scanning tunneling microscopy (STM), we have systematically characterized surface or near surface defects in p- and n- doped $Bi_2Te_3$, and identified their structure by first principles calculations. In addition, bias-polarity dependences of STM images revealed the electron donor/acceptor nature of each defect. A detailed theoretical study of the surface states near the Dirac energy reveals the robustness of the Dirac point, which verifies the effectiveness of the disturbance on the backscattering from various kinds of defects.

  • PDF

Rotor High-Speed Noise Prediction with a Combined CFD-Kirchhoff Method (CFD와 Kirchhoff 방법의 결합을 이용한 로터의 고속 충격소음 해석)

  • 이수갑;윤태석
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.607-616
    • /
    • 1996
  • A combined computational fluid dynamics(CFD)-Kirchhoff method is presented for predicting high-speed impulsive noise generated by a hovering blade. Two types of Kirchhoff integral formula are used; one for the classical linear Kirchhoff formulation and the other for the nonlinear Kirchhoff formulation. An Euler finite difference solver is solved first to obtain the flow field close to the blade, and then this flow field is used as an input to a Kirchhoff formulation to predict the acoustic far-field. These formulas are used at Mach numbers of 0.90 and 0.95 to investigate the effectiveness of the linear and nonlinear Kirchhoff formulas for delocalized flow. During these calculiations, the retarded time equation is also carefully examined, in particular, for the cases of the control surface located outside of the sonic cylinder, where multiple roots are obtained. Predicted results of acoustic far-field pressure with the linear Kirchhoff formulation agree well with experimental data when the control surface is at the certain location(R=1.46), but the correlation is getting worse before or after this specific location of the control surface due to the delocalized nonlinear aerodynamic flow field. Calculations based on the nonlinear Kirchhoff equation using a linear sonic cylinder as a control surface show a reasonable agreement with experimental data in negative amplitudes for both tip Mach numbers of 0.90 and 0.95, except some computational integration problems over a shock. This concliudes that a nonlinear formulation is necessary if the control surface is close to the blade and the flow is delocalized.

  • PDF

An Effectiveness Analysis of the Infrared Signature Reduction with Sea Water Cooling according to the Meteorological Environment (해양환경에 따른 해수냉각의 적외선 신호 저감 효과도 분석)

  • Jung, Ho-Seok;Cho, Yong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.521-528
    • /
    • 2016
  • The surface of a naval ship emits infrared signature because it is mainly heated by the sun. In order to reduce infrared signature, it has been practiced to cool surface of the naval ship by using sea water. In this study, reduction effect of infrared signature was compared according to the parameters which affect emission of infrared signature in order to increase utility of sea water cooling. The analysis results by searching parameters, which can judge operation of sea water cooling, could be utilized as basic data for operation of the naval ship.

Analysis of the surface sterilization effect of disinfectants (소독제 별 표면소독 효과 분석)

  • Oh, Eun-Bee;Oh, Yun-Gyo;Baek, Chan-Yeong;Song, Jin-Ha;Yoon, So-Hee;Oh, Sang-Hwan
    • Journal of Korean Academy of Dental Administration
    • /
    • v.7 no.1
    • /
    • pp.50-55
    • /
    • 2019
  • The purpose of this study was to compare the number of bacteria before and after the use of surface disinfectants, demonstrate the bactericidal effect of surface disinfectants, and emphasize on the importance of surface disinfectants by recognizing the importance of infection control in dentistry. Chlorhexidine, hydrogen peroxide, ethanol, and chemical disinfectants are commonly used in dentistry. NaOCl was selected as the experimental group, and the bacterium test results obtained by comparing the table without surface sterilization as a control group showed that all disinfectants had an effective bactericidal effect (p<0.05). In the growth inhibition test comparing the experimental and control groups, all results were 100%, proving the effectiveness of surface disinfectants. The results showed that all surface disinfectants preferred and used by medical institutions were effective. Therefore, all surface disinfectants used in the experimental group were effective for surface disinfection for infection control. Dental clinicians should be aware of the necessity of disinfection of surfaces, such as table, chairs, and unit chairs, and make an active effort to ensure that both clinicians and patients are safe from infection.

SURFACE DISINFECTION OF INTRAORAL FILMS (구내 방사선 필름의 표면소독효과에 관한 연구)

  • Lee Jin-Koo;Park Tae-Won
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.22 no.2
    • /
    • pp.329-335
    • /
    • 1992
  • The purpose of the study was to determine whether Sodium hypochlorite and Glutaraldehyde would be effective for the surface disinfection of contaminated radiographic film pockets with saliva The following results were as obtained 1. Proper times for surface disinfection of 2.0% Glutaraldehyde and 3.5% Sodium hypochlorite were 60 seconds. 2. When films were immerged in 2% Glutaraldehyde solution for 1 minute, baterial colonies were present in 24 cases(80%). 3. When films were immerged in 3.5% Sodium hypochlorite solution for 1 minute, bacterial colony was absent in 25 cases(83.3%). 4. Differences of effectiveness on surface disinfection between 2% Glutaraldehyde and 3.5% Sodium hypochlorite were statistically significant.

  • PDF

Effect of Deposit Conditions on Composition of Sn-Zn Alloy Deposits (Sn-Zn합금도금 조성에 미치는 도금조건의 영향)

  • 배대철;김현태;장삼규;조경목
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.6
    • /
    • pp.537-544
    • /
    • 2001
  • In the present study, tin-zinc alloys were coated on a cold-rolled steel sheet with variations of electrolyte concentration, additives quantity and current density employing the Hull cell and circulation cell simulator. With an addition of additives of 2m1/L, tin-zinc deposits containing 10 to 40 percent Zn revealed a good surface appearance with weak acidic electrolytes. The organic additives suppressed the Sn deposition rate and thus increased the zinc contents in tin-zinc coating layers. The zinc contents in the tin-zinc coating layers depended almost linearly on the concentrations of metal ions of tin and zinc. Temperature of the electrolyte affected the composition tin-zinc coating layer. However, the concentration of complexants revealed little effectiveness. The surface morphology of tin-zinc coating showed dense tin and zinc phases with fine equiaxed grains with the high current density.

  • PDF

Measurement Error Modeling for On-Machine Measurement of Sculptured Surfaces

  • Cho, Myeong-Woo;Lee, Se-Hee;Seo, Tae-Il
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 2001
  • The objective of this research is to develop a measurement error model for sculptured surface in On-Machine Measurement(OMM) process based on a closed-loop configuration. The geometric error model of each axis of a vertical CNC machining center is derived using a 4$\times$4 homogeneous transformation matrix. The ideal locations of a touch-type probe for the sculptured surface measurement are calculated from the parametric surface representation and X-, Y- directional geometric errors of the machine. Also the actual coordinates of the probe are calculated by considering the pre-travel variation of a probe and Z-directional geometric errors. Then, the step-by-sep measurement error analysis method is suggested based on a closed-loop configuration of the machining center including workpiece and probe errors. The simulation study shows the simplicity and effectiveness of the proposed error modeling strategy.

  • PDF