• 제목/요약/키워드: Surface-permanent magnet synchronous motor

검색결과 155건 처리시간 0.02초

Self-Commissioning for Surface-Mounted Permanent Magnet Synchronous Motors

  • Urasaki, Naomitsu;Senjyu, Tomonobu;Uezato, Katsumi
    • Journal of Power Electronics
    • /
    • 제3권1호
    • /
    • pp.33-39
    • /
    • 2003
  • This paper presents the self-commissioning for surface-mounted permanent magnet synchronous motor. The proposed strategy executes three tests with a vector controlled inverter drive system. To do this, synchronous d-q axes currents are appropriately controlled for each test. From the three tests, armature resistance, armature inductance, equivalent iron loss resistance, and emf coefficient are identified automatically. The validity of the proposed strategy is confirmed by experimental results.

저분해능 위치센서를 갖는 표면부착형 영구자석 동기전동기의 전류센서 없는 단위 전류 당 최대 토크 제어 (Current-Sensorless Maximum Torque per Ampere Control for a Surface Mounted Permanent Magnet Synchronous Motor with Low-Resolution Position Sensor)

  • 이광운
    • 전력전자학회논문지
    • /
    • 제14권3호
    • /
    • pp.204-210
    • /
    • 2009
  • 본 논문에서는 저분해능 위치센서를 갖는 표면부착형 영구자석 동기전동기의 새로운 전류센서 없는 단위 전류당 최대 토크 제어를 제안한다. 영구자석 동기전동기의 수학적 모델로부터 d축 전류를 추정하고, 추정된 d축 전류가 영(零)이 되도록 d축과 q축 전압지령 사이의 위상 각을 제어하여 단위 전류 당 최대 토크 제어를 구현한다. 제안된 방식은 동적 응답 특성이 느린 저가 응용 분야에 적합하다.

Mathematical Analysis and Simulation Based Survey on Initial Pole Position Estimation of Surface Permanent Magnet Synchronous Motor

  • Kim, Tae-Woong;Wheeler, Patrick;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.499-506
    • /
    • 2009
  • In this paper, the initial pole-position estimation of a surface (non-salient) permanent magnet synchronous motor is mathematically analyzed and surveyed on the basis of simulation analysis, and developed for accurate servo motor drive. This algorithm is well carried out under the full closed-loop position control without any pole sensors and is completely insensitive to any motor parameters. This estimation is based on the principle that the initial pole-position is simply calculated by the reverse trigonometric function using the two feedback currents in the full closed-loop position control. The proposed algorithm consists of the predefined reference position profile, the information of feedback currents, speed, and relative position, and the reverse trigonometric function for the initial-pole position estimation. Comparing with the existing researches, the mathematical analysis is introduced to get a more accurate initial pole-position of the surface permanent magnet motor under the closed-loop position control. It is found that the proposed algorithm can be easily applied in servo drive applications because it satisfies the following user's specifications; accuracy and moving distance.

반응표면법을 이용한 수직배열형 양측식 영구자석 선형 동기전동기의 최적설계 (Optimum Design of a Perpendicular Permanent Magnet Double-sided Linear Synchronous Motor using Response Surface Method)

  • 김창업
    • 조명전기설비학회논문지
    • /
    • 제30권2호
    • /
    • pp.26-30
    • /
    • 2016
  • This paper presented an optimum design of a perpendicular PMDSLSM (Permanent Magnet Double-sided Linear Synchronous Motor) to minimize the detent force. As an optimum method, the response surface method was used and 3D finite element method for the calculation. The design variables of the machine were the primary core width and thickness, and magnet width, thickness and length. Object functions were to minimize the detent force and maximize the thrust of the basic model. The results showed that the thrust force of the optimum design increased from 82.1N to 90.2N and detent force decreased from 15.2N to 2.8N, respectively, compared to the basic model.

슬롯효과를 고려한 해석적인 방법에 의한 PMLSM의 출력 최대화에 관한 연구 (A Study of Thrust Maximization Using Analytical Method Considering Slot Effect in Pemanent Magnet Linear Synchronous Motor)

  • 이동엽;김덕현;김규탁
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권7호
    • /
    • pp.323-328
    • /
    • 2005
  • This paper is proposed maximum thrust design of slotted permanent magnet linear synchronous motor(PMLSM) using surface harmonic method(SHM) considering slot effect. The genetic a1gorithm is used for optimization. The functional are selected the maximum thrust and the minimum detent force. This time. design parameters are set as permanent magnet(PM) width. PM height and slot width. Thrust is increased from 272[N] to 295[N] and detent force is decreased from 5[N] to 2.43[N] greatly in optimum design. Therefore, thrust ripple isn't generating almost. Also, the results of 2D EMC considering slot-effect are compared with ones of experimental and finite element analysis..

영구자석 동기 전동기의 토오크 각 제어 (A Torque Angle Control of Permanent Magnet Synchronous Motors)

  • 최욱돈;정명길;이헌상;김명찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.336-339
    • /
    • 1990
  • The permanent magnet synchronous motor windings are energized by sinusoidal excitation current. The frequency of the winding excitation current is synchronous with motor movement and the phase is a function of the motor position with respect to the stator. The total operational speed range of the system is substantially incresed by controlling the phase of the excitation currents at a function of the desired speed. This becomes the torque angle between stator rotating field and motor position. In this paper, torque angle control method is described for surface permanent magnet synchronous motor (SPMSM). The control circuit for realizing control method is investigated and the system test is carried out.

  • PDF

이중 PLL 구조를 이용한 표면부착형 영구자석 동기전동기 센서리스 구동장치의 성능 개선 (Performance Improvement of Sensorless Drives for Surface Mounted Permanent Magnet Synchronous Motor using a Dual PLL Structure)

  • 이광운
    • 전력전자학회논문지
    • /
    • 제22권6호
    • /
    • pp.543-546
    • /
    • 2017
  • This paper presents a simple approach for improving the performance of back-electromotive force (back-EMF)-estimation-based sensorless drives for surface-mounted permanent magnet synchronous motors (SPMSM). Similar to conventional approaches, a hypothetical d-q synchronous reference frame model of SPMSM is employed in the proposed approach to estimate the back-EMFs. This approach also employs a dual phase locked loop structure to compensate for the effect of the dead time and parameter uncertainty of the inverter on the estimated back-EMFs. The proposed algorithm is validated by conducting experiments.

Minimization of Losses in Permanent Magnet Synchronous Motors Using Neural Network

  • Eskander, Mona N.
    • Journal of Power Electronics
    • /
    • 제2권3호
    • /
    • pp.220-229
    • /
    • 2002
  • In this paper, maximum efficiency operation of two types of permanent magnet synchronous motor drives, namely; surface type permanent magnet synchronous machine (SPMSM) and interior type permanent magnet synchronous motor(IPMSM), are investigated. The efficiency of both drives is maximized by minimizing copper and iron losses. Loss minimization is implemented using flux weakening. A neural network controller (NNC) is designed for each drive, to achieve loss minimization at difffrent speeds and load torque values. Data for training the NNC are obtained through off-line simulations of SPMSM and IPMSM at difffrent operating conditions. Accuracy and fast response of each NNC is proved by applying sudden changes in speed and load and tracking the UC output. The drives'efHciency obtained by flux weakening is compared with the efficiency obtained when setting the d-axis current component to zero, while varying the angle of advance "$\vartheta$" of the PWM inverter supplying the PMSM drive. Equal efficiencies are obtained at diffErent values of $\vartheta$, derived to be function of speed and load torque. A NN is also designed, and trained to vary $\vartheta$ following the derived control law. The accuracy and fast response of the NN controller is also proved.so proved.

Analysis and Experimental Characterization of Low Speed Direct Drive Fractional Slot Concentrated Winding Surface Permanent Magnet Synchronous Motor with Consequent Pole Rotor

  • Chung, Shi-Uk;Chun, Yon-Do;Moon, Seok-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2057-2061
    • /
    • 2015
  • This paper describes analysis and experimental characterization of low speed direct drive fractional slot concentrated winding (FSCW) surface permanent magnet synchronous motor (SPMSM) with consequent pole (CP) rotor, for which studies have been recently performed. The proposed motor, which consists of 30 poles and 36 slots, is analyzed and characterized by extensive 2D finite element analysis (FEA) and together with 3D FEA for an appropriate PM overhang length design. The validity of the analysis is confirmed by the corresponding experiments which fully characterize the proposed motor with excellent agreement between the FEA and the experiments. Thermal stability is also experimentally examined to determine continuous operating points and instantaneous operating points of the proposed motor. It is highly expected that the proposed motor is applicable for low speed direct drive applications.

EPS용 표면부착형 영구자석 동기전동기의 토크 리플 저감 (Surface Mounted Permanent Magnet Synchronous Motor Design for Torque Ripple Reduction in EPS)

  • 임승빈;박현종;강동우;함상환;이주
    • 조명전기설비학회논문지
    • /
    • 제24권8호
    • /
    • pp.27-31
    • /
    • 2010
  • EPS(Elctrical Power Steering)에서 전동기의 토크 리플은 조향장치의 진동 문제를 야기한다. 따라서 EPS에서 전동기의 토크 리플 저감은 중요한 문제이며, 본 논문에서는 EPS에서 사용하는 표면부착형 영구자석 동기전동기의 토크 리플 저감에 대해 논하였다. 유한요소법을 이용하여 영구자석과 고정자 슈의 형상 변화를 통해 역기전력을 분석하였으며 이를 바탕으로 토크 리플 저감 방안을 제시하였다.