• 제목/요약/키워드: Surface temperature treatment

검색결과 1,689건 처리시간 0.032초

저온프로세스를 이용한 고분자필름의 플라즈마 표면처리 (Plasma Surface Treatment of the Polymeric Film with Low Temperature Process)

  • 조욱;양성채
    • 한국전기전자재료학회논문지
    • /
    • 제21권5호
    • /
    • pp.486-491
    • /
    • 2008
  • The plasma processing is applied to many industrial fields as thin film deposition or surface treatment technique. In this study, we investigated large-area uniformed surface treatment of PET film at low temperature by using Scanning Plasma Method(SPM). Then, we measured difference and distribution of temperature on film's surface by setting up a thermometer. We studied the condition of plasma for surface treatment by examining intensity of irradiation of uniformed plasma. And we compared contact angles of treated PET film by using Ar and $O_2$ plasma based low temperature. In our result, surface temperature of 3-point of treating is low temperature about $22^{\circ}C$, in other hands, there is scarcely any variation of temperature on film's surface. And by using Ar plasma treatment, contact angle is lower than untreatment or $O_2$ plasma treatment. In case of PET film having thermal weak point, low temperature processing using SPM is undamaged method in film's surface and uniformly treated film's surface. As a result, Ar plasma surface treatment using SPM is suitable surface treatment method of PET film.

내식성 및 표면경도 향상을 위한 AISI 304L 스테인리스강의 저온 플라즈마질화 프로세스 (Low Temperature Plasma Nitriding Process of AISI 304L Austenitic Stainless Steels for Improving Surface Hardness and Corrosion Resistance)

  • 이인섭
    • 대한금속재료학회지
    • /
    • 제47권10호
    • /
    • pp.629-634
    • /
    • 2009
  • The effects of processing parameters on the surface properties of the hardened layers processed by the low temperature plasma nitrocarburizing and the low temperature two-step plama treatment (carburizing+nitriding) were investigated. The nitrogen-enriched expanded austenite structure (${\gamma}_N$) or S phase was formed on all of the treated surface. The surface hardness reached up to 1200 $HV_{0.025}$, which is about 5 times higher than that of untreated sample (250 $HV_{0.1}$). The thickness of hardened layer of the low temperature plasma nitrocarburized layer treated at $400^{\circ}C$ for 40 hour was only $15{\mu}m$, while the layer thicknesss in the two-step plama treatment for the 30 hour treatment increased up to about $30{\mu}m$. The surface thickness and hardness increased with increasing treatment temperature and time. In addition, the corrosion resistance was enhanced than untreated samples due to a high concentration of N on the surface. However, higher treatment temperature and longer treatment time resulted in the formation of $Cr_2N$ precipitates, which causes the degradation of corrosion resistance.

고온 열처리가 와이어 컷 가공면에 미치는 영향 (Effect of Heat Treatment on the Surface Machined by W-EDM)

  • 최계광;이용신
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.539-543
    • /
    • 2006
  • Experimental studies are carried out in order to investigate the effects of heat treatment on the surface machined by W-EDM. In this work, two ways of heat treatment after W-EDM are considered. As a comparison, the machined surface by a traditional method such as milling/grinding is also considered. Thereby, specimens are prepared by four different machining methods. Those are (1) milling and then grinding, (2) wire-cut electric discharge machining (W-EDM), and (3) low temperature heat treatment or (4) high temperature heat treatment after W-EDM. The resulting surface roughness are measured and the changes of surface microstructures are investigated using the scanning electron microscope (SEM) with energy dispersive X-ray spectrometer (EDS). In general, heat treatment after W-EDM result in smoother surface and better chemical composition at the machined surface. Especially, high temperature tempering could remove defects in the thermally affected zone, which cause an overall deterioration of the surface machined by W-EDM.

표면처리별 S10T, 10.9HRC 고장력 볼트 세트의 체결 품질 연구 (The Joining Quality of High Strength Bolt, Nut and Washer Set (S10T & 10.9HRC) under the Surface Treatment Conditions)

  • 최윤오;석한길;홍현선
    • 한국표면공학회지
    • /
    • 제48권3호
    • /
    • pp.93-99
    • /
    • 2015
  • This test focuses on the correlations between joining axial force at non-room temperature and at room temperature according to the surface treatment (Geomet, Dacro, Green Kote, Armore Galv.). The quality characteristics of the fastening axial force required by the KSB 2819 and EN14399-10 standards were discussed. Surface treatment was implemented to S10T and 10.9HRC sets of bolts under the same environmental factors. Development for the stabilization of the fastening axial force required by each standard should continually be enforced, and the fastening and storage in the field should be maintained at room temperature. Managing stabilization of torque enumerated data is required after application of surface treatment. It is concluded that, by conducting the test of applying surface treatment to effectively manage, each lot-specific rate of axial force at room temperature conditions should be maintained below the maximum 4.47%. The decline rate of axial force should be maintained under 2.15% maximum, and the standard deviation of the room temperature condition should be maintained below 0.5.

Surface Treatment with CO2 to Improve Electrochemical Characteristics of Carbon Felt Electrode for VRFB

  • Yechan Park;Sunhoe Kim
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.131-138
    • /
    • 2023
  • The carbon felt is usually hired as electrodes for vanadium redox flow battery (VRFB). In the study, surface modification of carbon felt under CO2 atmosphere with variables of operating various temperature ranges between 700℃ and 900℃. The qualitative and quantitative analysis were carried out such as scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) to observe degree of surface modification. Result of XPS analysis confirmed increase of carbon and oxidation functional group on the surface with increase of temperature. SEM image was discovered similar phenomena. Electrochemical characteristics such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) revealed the improved electrode performance with increase of temperature. However, the electrochemical performance under treatments temperature of 900℃ was less than that of under treatment temperature of 850℃ due to weight loss at the treatment temperature of 900℃. From the CV and EIS results, the best electrochemical characteristics was at the temperature of 850℃. That of at the temperature of 900℃ was decreased due to weight loss. The energy efficiencies (EE) obtained from full cell test were 69.37, 80.76, 82.45, and 75.47%, at the temperature of 700, 800, 850, and 900℃, respectively.

Surface Modification by Heat-treatment of Propellant Waste Impregnated ACF

  • Yoon, Keun-Sig;Pyo, Dae-Ung;Lee, Young-Seak;Ryu, Seung-Kon;Yang, Xiao Ping
    • Carbon letters
    • /
    • 제11권2호
    • /
    • pp.131-136
    • /
    • 2010
  • Propellant waste was impregnated on the surface of activated carbon fiber and heat-treated at different temperature to introduce newly developed functional groups on the ACF surface. Functional groups of nitrogen and oxygen such as pyridine, pyridone, pyrrol, lacton and carboxyl were newly introduced on the surface of modified activated carbon fiber. The porosity, specific surface area, and morphology of those modified ACFs were changed as increasing the heat-treated temperature from 200 to $500^{\circ}C$. The optimum heat-treatment temperature was suggested to $500^{\circ}C$, because lower temperature given rise to the decrease of specific surface area and higher temperature resulted in the decrease of weight loss. Propellant waste can be used as an useful surface modifier to porous carbons.

금형 표면 처리가 AZ31B 마그네슘 합금의 온간 마찰 특성에 미치는 영향에 관한 연구 (Influence of Tool Coating on Frictional Behavior of AZ31B Mg Alloy at Elevated Temperature)

  • 한수식
    • 소성∙가공
    • /
    • 제30권1호
    • /
    • pp.43-48
    • /
    • 2021
  • The success of warm forming of Mg alloy sheet is greatly influenced by friction at elevated temperature, depending on the surface treatment of the tool. The tool coating affected the frictional characteristics of AZ31B Mg alloy sheet at elevated and room temperatures. The frictional behavior of the Mg alloy sheet at room temperature was not significantly affected by surface treatment conditions of the tool, but was significantly affected at elevated temperature. When the contact pressure is high, a few surface-treated tools exhibit a higher coefficient of friction than those without surface treatment. It is important to select the surface treatment conditions of the tool in order to ensure appropriate friction during warm forming of Mg alloy sheet.

이종재료 접착제 접합부의 환경 피로강도 평가 (Evaluation of Environmental Fatigue Strength in Adhesive Bonding of Different Materials)

  • 임재규;이중삼;윤호철;유성철
    • Journal of Welding and Joining
    • /
    • 제20권5호
    • /
    • pp.99-105
    • /
    • 2002
  • One of the important advantage of adhesive bonded joint can combine the different materials. The joint that bonded by structural adhesive bond must keep a large force and its strength is affected by some environmental factors such as temperature and submergence time in water. In order to advance the fatigue strength of adhesive bonded joint, mostly put a surface treatment on the surface. This study was researched the effect of air temperature, submergence time, submergence temperature and surface treatment on the fatigue strength. We found that submergence temperature has the most effect and low plasma treatment specimens have the most fatigue strength.

고출력 다이오드 레이저를 이용한 프레스 드로우금형의 열처리 특성 (Heat Treatment Characteristics of a Press Draw Mold by Using High Power Diode Laser)

  • 황현태;소상우;김종도;김영국;김병훈
    • 열처리공학회지
    • /
    • 제22권6호
    • /
    • pp.339-344
    • /
    • 2009
  • Recently, Laser surface treatment technologies have been used to improve wear charactenitics and fatigue resistance of metal molding. When the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate this, microstructural changes and hardness characteristics of three parts (the surface treatment part, heat affect zone, and parental material) are observed with the change of laser beam speed and surface temperature. Moreover, the depth of the hardened area is observed with the change of the laser beam speed and temperature. From the results of the experiments, it has been shown that the maximum hardness is approximately 788Hv when the heat treatment temperature and the travel speed are $1150^{\circ}$ and 2 mm/sec, respectively.

아르곤 플라즈마처리에 의한 다결정 $Si_{1-x}Ge_x$박막의 표면거칠기 개선 (The Improvement of Surface Roughness of Poly-$Si_{1-x}Ge_x$Thin Film Using Ar Plasma Treatment)

  • 이승호;소명기
    • 한국세라믹학회지
    • /
    • 제34권11호
    • /
    • pp.1121-1128
    • /
    • 1997
  • In this study, the Ar plasma treatment was used to improve the surface roughness of Poly-Si1-xGex thin film deposited by RTCVD. The surface roughness and the resistivity of Si1-xGex thin film were investigated with variation of Ar plasma treatment parameters (electrode distance, working pressure, time, substrate temperature and R.F power). When the Ar plasma treatment was used, the cluster size decreased by the surface etching effect due to the increasing surface collision energy of particles (ion, neutral atom) in plasma under the conditions of decreasing electrode distance and increasing pressure, time, temperature, and R. F power. Although the surface roughness value decreased by the reduction of the cluster size due to surface etching effect, however, the resistivity increased. This may be due to the surface damage caused by the increasing surface collision energy. It was concluded that the surface roughness could be improved by the Ar plasma treatment, while the resistivity was increased by the surface damage on the substrate.

  • PDF