• Title/Summary/Keyword: Surface segmentation

Search Result 224, Processing Time 0.082 seconds

Research on damage detection and assessment of civil engineering structures based on DeepLabV3+ deep learning model

  • Chengyan Song
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.443-457
    • /
    • 2024
  • At present, the traditional concrete surface inspection methods based on artificial vision have the problems of high cost and insecurity, while the computer vision methods rely on artificial selection features in the case of sensitive environmental changes and difficult promotion. In order to solve these problems, this paper introduces deep learning technology in the field of computer vision to achieve automatic feature extraction of structural damage, with excellent detection speed and strong generalization ability. The main contents of this study are as follows: (1) A method based on DeepLabV3+ convolutional neural network model is proposed for surface detection of post-earthquake structural damage, including surface damage such as concrete cracks, spaling and exposed steel bars. The key semantic information is extracted by different backbone networks, and the data sets containing various surface damage are trained, tested and evaluated. The intersection ratios of 54.4%, 44.2%, and 89.9% in the test set demonstrate the network's capability to accurately identify different types of structural surface damages in pixel-level segmentation, highlighting its effectiveness in varied testing scenarios. (2) A semantic segmentation model based on DeepLabV3+ convolutional neural network is proposed for the detection and evaluation of post-earthquake structural components. Using a dataset that includes building structural components and their damage degrees for training, testing, and evaluation, semantic segmentation detection accuracies were recorded at 98.5% and 56.9%. To provide a comprehensive assessment that considers both false positives and false negatives, the Mean Intersection over Union (Mean IoU) was employed as the primary evaluation metric. This choice ensures that the network's performance in detecting and evaluating pixel-level damage in post-earthquake structural components is evaluated uniformly across all experiments. By incorporating deep learning technology, this study not only offers an innovative solution for accurately identifying post-earthquake damage in civil engineering structures but also contributes significantly to empirical research in automated detection and evaluation within the field of structural health monitoring.

Utilizing Airborne LiDAR Data for Building Extraction and Superstructure Analysis for Modeling (항공 LiDAR 데이터를 이용한 건물추출과 상부구조물 특성분석 및 모델링)

  • Jung, Hyung-Sup;Lim, Sae-Bom;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.227-239
    • /
    • 2008
  • Processing LiDAR (Light Detection And Ranging) data obtained from ALS (Airborne Laser Scanning) systems mainly involves organization and segmentation of the data for 3D object modeling and mapping purposes. The ALS systems are viable and becoming more mature technology in various applications. ALS technology requires complex integration of optics, opto-mechanics and electronics in the multi-sensor components, Le. data captured from GPS, INS and laser scanner. In this study, digital image processing techniques mainly were implemented to gray level coded image of the LiDAR data for building extraction and superstructures segmentation. One of the advantages to use gray level image is easy to apply various existing digital image processing algorithms. Gridding and quantization of the raw LiDAR data into limited gray level might introduce smoothing effect and loss of the detail information. However, smoothed surface data that are more suitable for surface patch segmentation and modeling could be obtained by the quantization of the height values. The building boundaries were precisely extracted by the robust edge detection operator and regularized with shape constraints. As for segmentation of the roof structures, basically region growing based and gap filling segmentation methods were implemented. The results present that various image processing methods are applicable to extract buildings and to segment surface patches of the superstructures on the roofs. Finally, conceptual methodology for extracting characteristic information to reconstruct roof shapes was proposed. Statistical and geometric properties were utilized to segment and model superstructures. The simulation results show that segmentation of the roof surface patches and modeling were possible with the proposed method.

Building Modeling Method with LiDAR Data and Aerial Imagery (라이다 데이터와 항공영상에 의한 건물 모델링 방법)

  • Lee, Jin-Hyung;Yoo, Eun-Jin;Lee, Dong-Cheon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.67-68
    • /
    • 2010
  • Segmentation of LiDAR data is an important procedure in building modeling. Therefore, in this study, aerial imagery is used to group LiDAR data for both improving segmentation accuracy and modeling detail surface patches of the roofs. The results show that the proposed method is efficient to analyze and to model various types of roof shape.

  • PDF

Surface Segmentation and Feature Description using the Signature Technique (Signature 기법을 이용한 면의 특징 표현 및 분할 기법)

  • 이보형;한헌수
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.12
    • /
    • pp.90-97
    • /
    • 1997
  • This paper presents a new algorithm for surface segmentation and feature description. The algorithm extracts the signature of an edge image based on the signature technqique[12] in the first stage. If there exists a range in the angle axis where more than two signatures form a closed curve, we can conclude there is a surface inside the range. Using this feature of the signature, surfaces can be segmented. The surface features such as number of vertices, number of edges, and type of surfaces can also be extracted by finding the signatures of individual surfaces. This algorithm has distinguished advantages: it can easily recover the lost part occuring in the edge iage using the curve fitting method and it can extract surface features even when surfaces are rotated in 3-D space.

  • PDF

Developments of Semi-Automatic Vertebra Bone Segmentation Tool using Valley Tracking Deformable Model (계곡 추적 Deformable Model을 이용한 반자동 척추뼈 분할 도구의 개발)

  • Kim, Yie-Bin;Kim, Dong-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.791-797
    • /
    • 2007
  • This paper proposes a semiautomatic vertebra segmentation method that overcomes limitations of both manual segmentation requiring tedious user interactions and fully automatic segmentation that is sensitive to initial conditions. The proposed method extracts fence surfaces between vertebrae, and segments a vertebra using fence-limited region growing. A fence surface is generated by a deformable model utilizing valley information in a valley emphasized Gaussian image. Fence-limited region growing segments a vertebra using gray value homogeneity and fence surfaces acting as barriers. The proposed method has been applied to ten patient data sets, and produced promising results accurately and efficiently with minimal user interaction.

Feature Extraction System for Land Cover Changes Based on Segmentation

  • Jung, Myung-Hee;Yun, Eui-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.207-214
    • /
    • 2004
  • This study focused on providing a methodology to utilize temporal information obtained from remotely sensed data for monitoring a wide variety of targets on the earth's surface. Generally, a methodology in understanding of global changes is composed of mapping, quantifying, and monitoring changes in the physical characteristics of land cover. The selected processing and analysis technique affects the quality of the obtained information. In this research, feature extraction methodology is proposed based on segmentation. It requires a series of processing of multitempotal images: preprocessing of geometric and radiometric correction, image subtraction/thresholding technique, and segmentation/thresholding. It results in the mapping of the change-detected areas. Here, the appropriate methods are studied for each step and especially, in segmentation process, a method to delineate the exact boundaries of features is investigated in multiresolution framework to reduce computational complexity for multitemporal images of large size.

Detection of corrosion on steel plate by using Image Segmentation Method (영상분할법을 이용한 강판상의 부식 감지)

  • Kim, Beomsoo;Kim, Yeonwon;Yang, Jeonghyeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.84-89
    • /
    • 2021
  • The visual inspection method is widely used for corrosion damage analysis of steel plate due to the cost-efficient, fast and reasonably accurate results. However, visual inspection of corrosion deteriorated degree has a problem that the reliability of results differs depending on the inspector's individual knowledge and experience. In this study, we evaluated the degree of corrosion from a given image by using image segmentation method based on the grabcut and HSV(Hue, Saturation, Value) color image processing techniques for the development of an automatic inspection tool. The code written in Python based OpenCV-python libraries was used to categorize the images.

Segmentation of Scalp and Skull in brain MR Images Using CannyEdge Level Set Method

  • Du, Ruoyu;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.668-671
    • /
    • 2010
  • In this paper, we present a novel automatic algorithm for scalp and skull segmentation in T1-weighted head MR images. First, the scalp and skull part are constructed by using intensity threshold. Second, the scalp outer surface is extracted based on an active level set method. Third, the skull inner surface is extracted using a canny edge detection algorithm. Finally, the fast sweeping, tagging and level set methods are applied to reconstruct surfaces from the detected points in three-dimensional space. The results of the new segmentation algorithm on MRI data acquired from eight persons were compared with manual segmented data. The average similarity indices for the scalp and skull segmented regions were equal to 84.42% for the test data.

Generation of Triangular Mesh of Coronary Artery Using Mesh Merging (메쉬 병합을 통한 관상동맥의 삼각 표면 메쉬 모델 생성)

  • Jang, Yeonggul;Kim, Dong Hwan;Jeon, Byunghwan;Han, Dongjin;Shim, Hackjoon;Chang, Hyuk-jae
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.419-429
    • /
    • 2016
  • Generating a 3D surface model from coronary artery segmentation helps to not only improve the rendering efficiency but also the diagnostic accuracy by providing physiological informations such as fractional flow reserve using computational fluid dynamics (CFD). This paper proposes a method to generate a triangular surface mesh using vessel structure information acquired with coronary artery segmentation. The marching cube algorithm is a typical method for generating a triangular surface mesh from a segmentation result as bit mask. But it is difficult for methods based on marching cube algorithm to express the lumen of thin, small and winding vessels because the algorithm only works in a three-dimensional (3D) discrete space. The proposed method generates a more accurate triangular surface mesh for each singular vessel using vessel centerlines, normal vectors and lumen diameters estimated during the process of coronary artery segmentation as the input. Then, the meshes that are overlapped due to branching are processed by mesh merging and merged into a coronary mesh.

Estimation of Concrete Porosity Using Image Segmentation Method (영상 분할기법을 활용한 콘크리트의 공극률 평가 )

  • Hyun-Joon Jeong;Hoseong Jeong;Jae Hyun Kim;Kang-Su Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.30-36
    • /
    • 2023
  • In this study, an image segmentation model that can evaluate surface porosity based on concrete surface images was derived. Three types of concrete specimens with different water-cement ratios (w/c = 54, 35, and 30%) were prepared, and 2,729 surface images were obtained using an optical microscope. Benchmarking tests, parameter optimization, and final model derivation were performed using the surface images, and an image segmentation model with 97% verification accuracy was obtained. The model was verified by comparing the porosity obtained from the model and X-Ray Microscope (XRM). The model provided similar porosity to that of XRM for the specimens with a high water-cement ratio, but tended to give lower porosity for specimens with a low water-cement ratio.