• Title/Summary/Keyword: Surface run-off

Search Result 55, Processing Time 0.021 seconds

Studies on Soil Conservation Effects of the Straw-mat Mulching (III) -Effects of the Mat Structures and Its Practicality- (볏짚거적덮기공법(工法)의 사방효과(砂防效果)에 관(關)한 연구(硏究)(III) -거적 밀도(密度)의 영향(影響) 및 공법(工法)의 실용성(實用性)-)

  • Woo, Bo-Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.27 no.1
    • /
    • pp.5-14
    • /
    • 1975
  • Eroded sloping faces in hillsides including cut-bank slopes are liable to both surface erosion and land-slides and the key to control of these form of erosion lies with drainages of excessive run-off and dense vegetation establishment including surface mulching on the slopes. Micro-plots having $1.6m^2$ (1 metre in width and 1.6 metres in slope length, and 1:1.2 in gradient) of banking slopes on coarse sand soil are used to establish the order of magnititude of the difference in controlling of soil erosion and water runoff, and in rating of survival, performed on the repetetions of three-experiment plots consisted of such three levels as 90% (Dense), 70% (Moderate), and 50% Sparse of the density of the coarse straw-mat mulchings. The main results obtained may be summarized as follows: 1. The rates of surface runoff are calculated as 13.13% from the dense mulchings, 14.21% from the moderate mulchings, and 15.57% from the sparse mulchings respectively. 2. The total amounts of soil loss are measured as about 1.24 tons/ha. from the dense mulchings, about 1.33 tons/ha. from the moderate mulchings, and about 1.44 tons/ha. from the sparse mulchings respectively. The amounts of soil loss under these treatments are much lower than the standard of erosion in USDA (1939 Bennet). 3. Average numbers of germination by treatment are counted as 80 seedlings at the dense mulchings. 132 at the moderates and 121 at the sparse respectively. Large numbers of seedling are suppressed and died during the growing at the dense mulchings due to mainly mechanical obstruction. 4. Coarse straw-mat having about 70% of coverage density is the most suitable mulches in both soil erosion control and vegetation establishment. 5. The method of coarse straw-mat mulching is the most recommendable measure for establishing the vegetation cover with less soil erosion on the denuded gentle slopes in hillsides at present in Korea.

  • PDF

Effect of Grass Filter Strips on NO3-N in Runoff from Forage Cropland (사료작물 재배지에서 초지식생대를 이용한 NO3-N 저감효과에 관한 연구)

  • Jo, Nam-Chul;Kim, Won-Ho;Seo, Sung;Yoon, Sei-Hyung;Lee, Ki-Won;Choi, Ki-Choon;Jung, Min-Woong
    • Journal of Animal Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • The performance of grass filter strips (GFS) in abating $NO_3$-N concentrations from the forage cropland was tested in an experiment on the 10% slope in Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration (RDA) from October 2007 to September 2009. Forage croplands with rye-corn double cropping system applied with chemical fertilizer and livestock manure (LM) were compared in a natural condition. The plots were hydrologically isolated in a randomized block layout of 3 treatments $\times$ 2 factors $\times$ 3 replicates. Main plots consisted of the length of GFS, such as 0 m, 5 m, 10m and 15m. Sub plots consisted of the type of LM, such as chemical fertilizer (CF), cattle manure (CM) and swine manure (SM). Dry matter yields of rye and corn increased significantly in order of CF > CM > SM (p<0.05). Concentrations of $NO_3$-N in surface runoff water were reduced as the length of GFS increased. Especially, GFS with 10 m and 15m reduced $NO_3$-N concentrations significantly compared to that with 0 m and 5 m (p<0.05). The results from this study suggest that GFS improved the removal and trapping of manure nutrients from forage croplands.

Characteristics of Pesticide Runoff and Persistence on Agricultural Watersheds in Korea (영농지역에서 작물재배 형태에 따른 농약의 잔류성과 유출특성)

  • Park, Byung-Jun;Kwon, Oh-Kyung;Kim, Jin-Kyoung;Kim, Jin-Bea;Kim, Jin-Ho;Yoon, Soon-Kang;Shim, Jae-Han;Hong, Moo-Gi
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.194-201
    • /
    • 2009
  • To evaluate the exposure of non-point source pesticide pollution in agricultural watershed and to investigate pesticide distribution and runoff from agricultural land, paddy field, upland and orchard, this experiment was carry out during crop growing seasons. The pesticide were detected twenty pesticides fungicide 4, insecticide 10, herbicide 6) in water of Neungchon agricultural watershed and detection concentrations were range 0.008${\sim}$7.59 ppb. Most of the detection pesticides were using pesticides to rice paddy fields to control fungi, insects, weeds. During the crop cultivation, the pesticide were detected total thirty pesticides by pepper field soil 6, orchard soil 4, sesame field soil 3 and rice paddy field soil 5, and pesticide concentrations were range 0.001${\sim}$0.109 ppm. Especially the herbicides were detected mainly in May and June in the stream water. The pesticide were detected thirty pesticides by fungicide 2, insecticide 6, herbicide 5 in water of Jungam Koseong agricultural watershed and detection concentrations were range 0.01${\sim}$7.21 ppb. In regard to the detected pesticides, the concentration of individual pesticides measured in surface water of the study areas never exceeded guidelines for agriculture chemicals concerning water quality-effluent from paddy fields in Japan (Katayama, 2003). Runoff rate of pesticides was range 0.07${\sim}$3.06 % from Kongju agricultural land to watershed after applied pesticides.

Site Selection for Geologic Records of Extreme Climate Events based on Environmental Change and Topographic Analyses using Paleo Map for Myeongsanimni Coast, South Korea (고지도 기반 환경변화연구 및 지형분석을 통한 명사십리 해안의 제4기 연안지대 이상기후 퇴적기록 적지선정)

  • Kim, Jieun;Yu, Jaehyung;Yang, Dongyoon
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.589-599
    • /
    • 2014
  • This study selected optimal sites in Myeongsasimni located in west coast of Korea for stratigraphic research containing extreme climate event during quaternary period by spatio-temporal analyses of changes in sedimentary environment and land use employing 1918 topographic map, 2000 digital terrain map, 1976 and 2012 air photographies. The study area shows no significant changes in topographic characteristics that hilly areas with relatively large variations in elevation are distributed over north and south part of the study area, and sand dues are developed along the coast line. Moreover, flat low lying areas are located at the back side of the sand dues. The movement of surface run off and sediment loads shows two major trends of inland direction flow from back sides of sand dunes and outland direction flow from high terrains inland, and the two flows merge into the stream located in the center of the study area. Two sink with individual area of $0.2km^2$ are observed in Yongjeong-ri and Jaryong-ri which are located in south central part and south part of the study area, respectively. In addition, sea level change simulation reveals that $3.4km^2$ and $3.64km^2$ are inundated with 3 m of sea level rise in 1918 and 2000, respectively, and it would contribute to chase sea level change records preserved in stratigraphy. The inundated areas overlaps well with sink areas where it indicates the low lying areas located in south cental and south part of the study area are identical for sediment accumulation. The areas with minimal human impact on sediment records over last 100 years are $3.51km^2$ distributed over central and south part of the study area with the land use changes of mud and rice field in 1918 to rice field in 2012. The candidate sites of $0.15km^2$ in central part and $0.09km^2$ in south part are identified for preferable locations of geologic record of extreme climate events during quaternary period based on the overlay analysis of optimal sedimentary environment and land use changes.

Environmental Interpretation on soil mass movement spot and disaster dangerous site for precautionary measures -in Peong Chang Area- (산사태발생지(山沙汰發生地)와 피해위험지(被害危險地)의 환경학적(環境學的) 해석(解析)과 예방대책(豫防對策) -평창지구(平昌地區)를 중심(中心)으로-)

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.45 no.1
    • /
    • pp.11-25
    • /
    • 1979
  • There was much mass movement at many different mountain side of Peong Chang area in Kwangwon province by the influence of heavy rainfall through August/4 5, 1979. This study have done with the fact observed through the field survey and the information of the former researchers. The results are as follows; 1. Heavy rainfall area with more than 200mm per day and more than 60mm per hour as maximum rainfall during past 6 years, are distributed in the western side of the connecting line through Hoeng Seong, Weonju, Yeongdong, Muju, Namweon and Suncheon, and of the southern sea side of KeongsangNam-do. The heavy rain fan reason in the above area seems to be influenced by the mouktam range and moving direction of depression. 2. Peak point of heavy rainfall distribution always happen during the night time and seems to cause directly mass movement and serious damage. 3. Soil mass movement in Peongchang break out from the course sandy loam soil of granite group and the clay soil of lime stone and shale. Earth have moved along the surface of both bedrock or also the hardpan in case of the lime stone area. 4. Infiltration seems to be rapid on the both bedrock soil, the former is by the soil texture and the latter is by the crumb structure, high humus content and dense root system in surface soil. 5. Topographic pattern of mass movement spot is mostly the concave slope at the valley head or at the upper part of middle slope which run-off can easily come together from the surrounding slope. Soil profile of mass movement spot has wet soil in the lime stone area and loose or deep soil in the granite area. 6. Dominant slope degree of the soil mass movement site has steep slope, mostly, more than 25 degree and slope position that start mass movement is mostly in the range of the middle slope line to ridge line. 7. Vegetation status of soil mass movement area are mostly fire field agriculture area, it's abandoned grass land, young plantation made on the fire field poor forest of the erosion control site and non forest land composed mainly grass and shrubs. Very rare earth sliding can be found in the big tree stands but mostly from the thin soil site on the un-weatherd bed rock. 8. Dangerous condition of soil mass movement and land sliding seems to be estimated by the several environmental factors, namely, vegetation cover, slope degree, slope shape and position, bed rock and soil profile characteristics etc. 9. House break down are mostly happen on the following site, namely, colluvial cone and fan, talus, foot area of concave slope and small terrace or colluvial soil between valley and at the small river side Dangerous house from mass movement could be interpreted by the aerial photo with reference of the surrounding site condition of house and village in the mountain area 10. As a counter plan for the prevention of mass movement damage the technics of it's risk diagnosis and the field survey should be done, and the mass movement control of prevention should be started with the goverment support as soon as possible. The precautionary measures of house and village protection from mass movement damage should be made and executed and considered the protecting forest making around the house and village. 11. Dangerous or safety of house and village from mass movement and flood damage will be indentified and informed to the village people of mountain area through the forest extension work. 12. Clear cutting activity on the steep granite site, fire field making on the steep slope, house or village construction on the dangerous site and fuel collection in the eroded forest or the steep forest land should be surely prohibited When making the management plan the mass movement, soil erosion and flood problem will be concidered and also included the prevention method of disaster.

  • PDF