• Title/Summary/Keyword: Surface roughness improvement

Search Result 342, Processing Time 0.032 seconds

Improvement of Brightness for AlGaInP High-brightness LEDs with Nano-scale Roughness on Top-GaP Surface (Top-GaP 상부에 나노 크기의 Roughness 처리에 의한 AlGaInP 고휘도 LED의 휘도 향상)

  • So, Soon-Jin;Ha, Hun-Sung;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.68-72
    • /
    • 2008
  • AlGaInP high-brightness LEDs(HB-LEDs) have gained importance a variety of application operating in the red, orange, yellow and yellow-green wavelength. The light generated from inside LED chips should be emitted to the air through the surfaces of the chips. However, because of the differences between the semiconductor and air or epoxy's refractive index, some of the light was blocked so that caused lowering external quantum efficiency. In this study, nano-scale roughness on the top-GaP layer of AlGaInP epitaxial wafer was fabricated to improve' the brightness of AlGaInP LEDs. Nano-scale roughness was made by ICP dry etcher. Our AlGaInP LEDs with nano-scale roughness has higher brightness (about 28.5 %) than standard AlGaInP LEDs.

A study on the vibration cutting of high-hardness mold steel (고경도 금형강의 진동 가공에 대한 연구)

  • Kim, Jong-Su
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.39-43
    • /
    • 2022
  • In this study, we designed an vibration cutting tool that can achieve improvements such as low cutting force, interrupted chip evacuation and better surface quality of cutting performance to obtain high-quality surface roughness and improvement of tool wear, which is an issue in the machining of high-hardness mold steel. Among the resonance frequency modes of the vibration cutting tool, the bending mode was used to maximize the driving amplitude of the vibration tool tip, and the resonance frequency was confirmed through the finite element method. After measuring the actual resonant frequency of the designed tool using an optical fiber sensor, the cutting force and machining surface of vibration cutting and conventional cutting were compared and analyzed in the turning process of high hardness mold steel (STAVAX). As a result of the experiment, the cutting force was reduced by about 20 % compared to the conventional cutting process, and the surface roughness was also improved by about 60 %. This study suggested that the tool wear and surface quality of high-hardness steel can be improved through the vibration cutting method in the machining of high hardness mold steel.

Cutting Characteristics of Plasma Source Son Implanted Tungsten Carbide Tool (플라즈마 이온주입에 의해 표면 개질한 초경공구의 가공특성)

  • Kang, Seong-Ki;Wang, Duck-Hyun;Kim, Won-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.33-40
    • /
    • 2010
  • In this research, the effects for surface Improvement of plasma ion implanted carbide endmill tools were observed by measuring cutting forces and tools wear affecting surface roughness in high speed cutting. From the 2nd ion mass analysis, the oxidation layer was found to be built up by sputtering. The residual gas contamination of oxygen was found to be contained impurities in nitrogen gas. The plasma implanted ion was found to be spreaded, especially the nitrogen was implanted up to 150nm depth as impressed voltage and ion implanting time. It is analyzed as bring surface improvement by spreading deeply forming oxidation on surface. The factors in Analysis of Variance(ANOVA) about mutuality cause reference of cutting force. The cutting force Fx is affected by the interaction of spindle rpm and federate, the cutting force Fy is influenced by spindle rpm and time injected ion, and cutting force Fz is affected by the interaction of impressed voltage and feedrate. Also, it was found that the cutting forces of implanted tools become lower and the surface roughness is improved by the effect of nitrogen according to the implantation.

A Study on Machined Surfaces Characteristics of Aluminum Alloy by AFM Measurement (AFM 측정법에 의한 알루미늄 합금의 초정밀 가공면 평가 연구)

  • Lee Gab-Jo;Kim Jong-Kwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.81-86
    • /
    • 2006
  • The machining parts must be produced within the specification of drawing and those will be able to meet function and efficiency. At that time, it is very important not only precision machine and machining technique but also the measurement technique. So, the improvement of measurement technique is to be joined together at once with improvement of machining technique. Finally, the quality and value of the parts are decided by precision measurement. This paper aims to study on the machined surfaces characteristics of aluminum alloy by AFM(Atomic force microscope) measurement. The objective is contribution to ultra-precision machining by exhibit foundation data of surface roughness and tool wear when parts are cutting with diamond tool at the factory.

A Study on the Improvement of Machining Accuracy in High Speed Machining of STD11 (STD11 금형강의 고속가공에서 가공정밀도 향상에 관한 연구)

  • 이춘만;최치혁;정원지;정종윤;고태조;김태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.329-334
    • /
    • 2002
  • High-speed machining is one of the most effective technology to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut, feed rate, spindle revolution and cutting force are control factors. The effect of the control factors on machining accuracy is discussed for the results of surface roughness and machining error in Z-direction for the high speed machining of STD11.

  • PDF

Influences of anodizing on improvement in reflection rate of aluminum surface (알루미늄 표면의 정반사율 향상에 미치는 양극산화의 영향)

  • Choi, Kyang-Kun;Kim, Dong-Hyoun;Kim, Hoon;Nam, In-Tak
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.207-211
    • /
    • 2002
  • Anodizing film was prepared by anodic oxidation of pure aluminum(purity > 99.50) using DC power supply for constant current mode in an electrolytic solution of surface of sulfuric acid. Effects of pre-treatment process such as chemical polishing, acid cleaning, alkali etching before anodic oxidation, were studied to microstructures and surface morphologies. A roughness on surface of anodizing film had to be decreased for amorphous phase by anodic oxidation. A roughness on surface of anodizing film decrease as annealing temperature increased in chemical polishing.

  • PDF

Effect of EDM Conditions when wire-EDM for Titanium Alloy (티타늄합금의 와이어 방전가공시 방전가공 조건의 영향)

  • 김종업;왕덕현;이윤경;김원일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.281-286
    • /
    • 2001
  • Titanium alloy conducted in this experimental study has superior corrosive resistant and is mainly used in aerospace, automotive and petro-chemical industries. It is also treated with important materials of domestic goods due to improvement of the standard of living. In this study specimens were processed in the wire EDM after annealing, solution treatment and aging. Results were obtained through repeated experments of main rough process and finish process with the change of process parameters. Processing characteristics such as surface hardness, surfaces roughness, shape of processed surface and components were measured. The results confirmed that the above mentioned elements were improved in accordance with the number of process. Therefore, the optimal wire EDM condition in accord with processing characteristics is proposed in this experiment.

  • PDF

Improvement of the surface roughness by changing chamfered angle in the face milling (정면밀리가공에서 챔퍼각 변화에 의한 표면조도 향상)

  • 이성세
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.641-646
    • /
    • 2000
  • A milling process with 45 degree chamfered inserts produces a perfect flat surface only in theory. It is due to many unwanted factors including thermal effect, dynamic effect, the problem of the controller used and the problem of accuracy of the machine tool. In this study, introduced is a method to improve the surface roughness by redesigning of the chamfer angle of the insert, which traditionally has been 45 degree. First, the relationship between the fixed machine coordinate and the relative coordinate on the insert is derived. This transfer matrix is used to determine the new insert angle to maximize the flatness of the machined surface. A newly designed insert is manufactured, and used to carry out the experiment. It is proved that the insert designed by the proposed method produced a much flatter surface than a traditional one.

  • PDF

Improvement of joining strength between aluminum alloy and polymer by two - step anodization

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.144-152
    • /
    • 2020
  • In the manufacturing process of joining of aluminum alloy and polymer, the strength of the metal-polymer joining is greatly influenced by the nanostructure of the oxide film. In this study, we investigated the dependence of joining strength on the thickness, structure, pore formation and surface roughness of the formed film. After the two-step anodization process, the surface oxide layer became thinner and rougher resulting in higher joining strength with the polymer. More specifically, after the two-step anodization, the surface roughness, Ra increased from 2.3 to 3.2 ㎛ with pore of three-dimensional (3D) nanostructure, and the thickness of the oxide film was thinned from 350 to 250 nm. Accordingly, the joining strength of the aluminum alloy with polymer increased from 23 to 30 MPa.