• 제목/요약/키워드: Surface roughness

검색결과 5,178건 처리시간 0.029초

Impact of Wet Etching on the Tribological Performance of 304 Stainless Steel in Hydrogen Compressor Applications

  • Chan-Woo Kim;Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • 제40권3호
    • /
    • pp.71-77
    • /
    • 2024
  • Hydrogen has emerged as an eco-friendly and sustainable alternative to fossil fuels. However, the utilization of hydrogen requires high-pressure compression, storage, and transportation, which poses challenges to the durability of compressor components, particularly the diaphragm. This study aims to improve the durability of 304 stainless steel diaphragms in hydrogen compressors by optimizing their surface roughness and corrosion resistance through wet etching. The specimens were prepared by immersing 304 stainless steel in a mixture of sulfuric acid and hydrogen peroxide, followed by etching in hydrochloric acid for various durations. The surface morphology, roughness, and wettability of the etched specimens were characterized using optical microscopy, surface profilometry, and water contact angle measurements. The friction and wear characteristics were evaluated using reciprocating sliding tests. The results showed that increasing the etching time led to the development of micro/nanostructures on the surface, thereby increasing surface roughness and hydrophilicity. The friction coefficient initially decreased with increasing surface roughness owing to the reduced contact area but increased during long-term wear owing to the destruction and delamination of surface protrusions. HCl-30M exhibited the lowest average friction coefficient and a balance between the surface roughness and oxide film formation, resulting in improved wear resistance. These findings highlight the importance of controlling the surface roughness and oxide film formation through etching optimization to obtain a uniform and wear-resistant surface for the enhanced durability of 304 stainless steel diaphragms in hydrogen compressors.

고주파열처리에 의한 SM45C 경도가 가공 표면 품위에 미치는 영향에 관한 연구 (A Study on the Surface Roughness Influenced by SM45C Hardness in High Frequency Induction Hardening)

  • 김원일;허성중
    • 열처리공학회지
    • /
    • 제6권1호
    • /
    • pp.1-8
    • /
    • 1993
  • In this paper, the surface roughness influenced by Sm45C hardness in high frequency induction hardening and mechanical characteristics for the changed Hv 598 part and the unchanged hardness Hv 223 part by use of cermet and ceramic cutting tools was experimentally examined. Finally, we could be had some important results by processing surface roughness on cutting conditions such as cutting speed, feed rate, depth of cut and changes of tool nose radius. The results are summarized as follows. 1. In case of the same cutting condition, the hardness of workpiece was high and acquired the best processing surface roughness when the radius of the tool nose had 0.8 mm and feed rate was 0.04 mm/rev. 2. In case of the hardness of workpiece, though the cutting speed didn't have an effect on processing surface roughness, the less feed rate and the more processing surface roughness improved. On the other hand, the low inside the hardness of workpiece, the more cutting speed and the more feed rate increase, the processing surface of roughness improved. 3. Regardless of the hardness of workpiece, the change of the cutting depth didn't have great effect on the surface roughness. 4. On cutting the high surface hardness part with cutting tools of cermet and ceramic, it can be acquired the higher processing surface roughness because it hadn't been taken effect on cutting speed, In case of the cutting process of the low inside hardness part the two cutting tools have acquired the similar processing surface roughness.

  • PDF

유리섬유강화 복합재료의 표면거칠기에 따른 에폭시 접착제의 접착강도 평가 (Evaluation of Adhesion Property of Epoxy Adhesive with Different Surface Roughness of GFRC)

  • 김종현;신평수;이상일;박종만
    • 접착 및 계면
    • /
    • 제21권1호
    • /
    • pp.27-33
    • /
    • 2020
  • 유리섬유강화 복합재료 (GFRC)의 표면거칠기에 따른 에폭시 접착제의 접착강도를 평가하였고 최적의 표면거칠기를 선정하였다. 서로 다른 입자크기의 알루미나 (Al2O3) 입자를 GFRC의 표면에 분사하였고 이를 통하여 서로 다른 표면거칠기를 부여하였다. 표면거칠기를 정량화 하였고 표면거칠기에 따른 표면관찰을 진행하였다. 각 표면거칠기에 따른 접촉각을 측정하였고 이를 통하여 표면에너지를 계산하였으며, 에폭시 접착제와의 접착일을 계산 및 비교하여 접착력을 예측하였다. 단일랩전단 시험을 통해 접착강도를 평가하였고 거칠기에 따라 접착강도가 증가된다는 것을 확인하였다. 박리 후 표면을 관찰해 보았을 때 기지재인 GFRC의 박리 정도가 다른 것을 확인하였고 최종적으로 표면거칠기의 최적조건을 확인할 수 있었다.

단침보강세라믹공구를 이용한 금형강(SKD61)의 선삭가공 시 표면거칠기에 영향을 미치는 인자 및 회귀방정식 도출 (Extract to Affected Factor to Surface Roughness and Regression Equation in Turning of Mold Steel(SKD61) by Whisker Reinforced Ceramic Tool)

  • 배명일;이이선;김형철
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.118-124
    • /
    • 2012
  • In this study, we turning mold steel (SKD61) using whisker reinforced ceramic tool (WA1) to get affected factor to surface roughness and regression equation. For this study, we adapt system of experiments. Results are follows; From the analysis of variance, it was found that affected factor to surface roughness was feed rate, cutting speed, depth of cut in order. From multi-regression analysis, we calculated regression equation and the coefficient of determination($R^2$). $R^2$ was 0.978 and It means regression equation is significant. Regression equation means if feed rate increase 0.039mm/rev, surface roughness will increase $0.8391{\mu}m$, if cutting speed increase 50m/min, surface roughness will decrease $0.034{\mu}m$, if depth of cut increase 0.1mm, surface roughness will increase $0.0203{\mu}m$. From the experimental verification, it was confirmed that surface roughness was predictable by system of experiments.

티타늄 표면조도가 조골세포의 부착 및 분화에 미치는 영향 (Effect of titanium surface roughness on adhesion and differentiation of osteoblasts)

  • 김정식;이재관;고성희;엄흥식;장범석
    • Journal of Periodontal and Implant Science
    • /
    • 제35권4호
    • /
    • pp.839-850
    • /
    • 2005
  • The success of an implant is determined by its integration into the tissue surrounding the biomaterial. Surface roughness is considered to influence the behavior of adherent cells. The aim of this in vitro study was to determine the effect of surface roughness on Saos-2 osteoblast-like cells. Titanium disks blasted with 75 ${/mu}m$ aluminum oxide particles and machined titanium disks were prepared. Saos-2 were plated on the disks at a density of 50,000 cells per well in 48-well dishes. After 1 hour, 1 day, 6 days cell numbers were counted. One day, 6 days after plating, alkaline phosphatase(ALPase) activity was determined. Compared to experimental group, the number of cells was significantly higher on control group. The stimulatory effect of surface roughness on ALPase was more pronounced on the experimental group than on control group. These results demonstrate that surface roughness alters proliferation and differentiation of osteoblasts. The results also suggest that implant surface roughness may play a role in determining phenotypic expression of cells.

레저선박의 표면조도 간격변화에 따른 유동해석에 관한 연구 (A Study on the Flow Analysis according to the change of Surface Roughness Gap in the Leisure Ship)

  • 오우준;조대환;이동섭;손창배;이경우
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2009년도 추계학술대회
    • /
    • pp.243-244
    • /
    • 2009
  • 선박의 표면은 소형선박에서부터 대형까지 매끄럽지 않고 어느 정도의 표면조도(surface roughness)를 가지고 있다. 표면조도는 표면저항과 열전달을 증가시키기 때문에 선박의 설계시 고려해야 될 중요한 설계인자 중 하나이다. 때문에 표면조도에 따른 주위유동에 관한 연구와 조도변화에 따른 유동 및 난류에 대한 연구가 지속적으로 이루어지고 있다. 선박의 표면조도는 선박에서 뿐만 아니라 기계나 항공까지 광범위하게 적용이 가능하며 가용 분야 또한 매우 넓다. 본 연구에서는 레저선박의 표면조도 간격변화에 따른 표면유동에 어떠한 영향을 끼치며 표면조도 영역에 따른 경계층에 대한 실험적 연구를 수행하였다.

  • PDF

나노 채널에서의 표면 거칠기와 경계 습윤의 효과 (Effects of Surface Roughness and Interface Wettability in a Nanochannel)

  • 추연식;서인수;이상환
    • 한국유체기계학회 논문집
    • /
    • 제13권2호
    • /
    • pp.5-11
    • /
    • 2010
  • The nanofluidics is characterized by a large surface-to-volume ratio, so that the surface properties strongly affect the flow resistance. We present here the results showing that the effect of wetting properties and the surface roughness may considerably reduce the friction of fluid past the boundaries. For a simple fluid flowing over hydrophilic and hydrophobic surfaces, the influences of surface roughness are investigated by the nonequilibrium molecular dynamics (NEMD) simulations. The fluid slip at near a solid surface highly depends on the wall-fluid interaction. For hydrophobic surfaces, apparent fluid slips are observed on smooth and rough surfaces. The solid wall is modeled as a rough atomic sinusoidal wall. The effects on the boundary condition of the roughness characteristics are given by the period and amplitude of the sinusoidal wall. It was found that the slip velocity for wetting conditions at interface decreases with increasing effects of surface roughness. The results show the surface rougheness and wettability determines the slip or no-slip boundary conditions. The surface roughness geometry shows significant effects on the boundary conditions at the interface.

표면평균기울기를 이용한 암석절리면의 3차원 거칠기 분석에 관한 연구 (A Study on 3D Roughness Analysis of Rock Joints Based on Surface Angularity)

  • 이덕환;이승중;최성웅
    • 터널과지하공간
    • /
    • 제21권6호
    • /
    • pp.494-507
    • /
    • 2011
  • 암석의 절리면 거칠기 평가에 있어서 최적의 거칠기 파라미터를 선택하는 것은 중요한 문제이다. 선행연구에서 절리면 거칠기의 평가는 여러 가지 통계적 방법에 의해 2차원적으로 이루어져왔다. 본 연구에서는 Barton과 Choubey(1977)가 제안한 표준 프로파일(JRC)을 3차원 표면으로 확장하고, 표면평균기울기를 적용하여 절리면 거칠기를 정량화 하였다. 그리고 $Z_2$, Ai파라미터와 비교하여 표면평균기울기를 이용한 거칠기 정량화의 타당성을 검증하였으며, 복제시료를 이용한 절리면 전단시험을 통하여 전단강도와 표면평균기울기의 관계를 분석하였다.

원통연삭가공시 반도체 레이저 빔을 이용한 금속표면거칠기의 인프로세스 측정 (A Study on the In-process Measurement of Metallic Surface roughness in Cylindrical Grinding by Diode Laser)

  • 김희남
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1995년도 춘계학술대회 논문집
    • /
    • pp.1-8
    • /
    • 1995
  • This paper proposed a simple method for measuring surface roughness of ground surface. utilizing non-contact in-process measuring system using the diode laser. The measurement system is consisted of a laser unit with a diode laser and a cylindrical lens a detecting unit with polygon mirror and CCD array sensor. and a signal processing unit with a computer and device. During operation, this measuring system can provide information on surface roughness in the measuring distance with a single sampling and simultanilusly monitor the state of the grind wheel. The experimental results, showed that the increase of the feed rate and the dressing speed an caused increase in the surface roughness and when the surface roughness is 4Rmax-10Rmax, the cutting speed is 1653m/min-1665m/min. the feed rate is 0.2m/min-0.9m/min, the dressing speed is 0.2mm/rev-0.4mm/rev, the stylus method and the in-process method can be obtained the same results. thus under limited working conditions. using the proposed system. the surface roughness of the ground surface during cylindrical grinding can be obtained through the in-process measurement method using the diode laser.

  • PDF

금형의 절삭가공에서 이론 모형 기반 표면거칠기 예측 결과의 실험적 모형 전환을 위한 인공신경망 구축에 대한 연구 (A Study on the Construction of an Artificial Neural Network for the Experimental Model Transition of Surface Roughness Prediction Results based on Theoretical Models in Mold Machining)

  • 김지우;이동원;김종선;김종수
    • Design & Manufacturing
    • /
    • 제17권4호
    • /
    • pp.1-7
    • /
    • 2023
  • In the fabrication of curved multi-display glass for automotive use, the surface roughness of the mold is a critical quality factor. However, the difficulty in detecting micro-cutting signals in a micro-machining environment and the absence of a standardized model for predicting micro-cutting forces make it challenging to intuitively infer the correlation between cutting variables and actual surface roughness under machining conditions. Consequently, current practices heavily rely on machining condition optimization through the utilization of cutting models and experimental research for force prediction. To overcome these limitations, this study employs a surface roughness prediction formula instead of a cutting force prediction model and converts the surface roughness prediction formula into experimental data. Additionally, to account for changes in surface roughness during machining runtime, the theory of position variables has been introduced. By leveraging artificial neural network technology, the accuracy of the surface roughness prediction formula model has improved by 98%. Through the application of artificial neural network technology, the surface roughness prediction formula model, with enhanced accuracy, is anticipated to reliably perform the derivation of optimal machining conditions and the prediction of surface roughness in various machining environments at the analytical stage.