• Title/Summary/Keyword: Surface response analysis

Search Result 1,763, Processing Time 0.033 seconds

Probabilistic shear-lag analysis of structures using Systematic RSM

  • Cheng, Jin;Cai, C.S.;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.507-518
    • /
    • 2005
  • In the shear-lag analysis of structures deterministic procedure is insufficient to provide complete information. Probabilistic analysis is a holistic approach for analyzing shear-lag effects considering uncertainties in structural parameters. This paper proposes an efficient and accurate algorithm to analyze shear-lag effects of structures with parameter uncertainties. The proposed algorithm integrated the advantages of the response surface method (RSM), finite element method (FEM) and Monte Carlo simulation (MCS). Uncertainties in the structural parameters can be taken into account in this algorithm. The algorithm is verified using independently generated finite element data. The proposed algorithm is then used to analyze the shear-lag effects of a simply supported beam with parameter uncertainties. The results show that the proposed algorithm based on the central composite design is the most promising one in view of its accuracy and efficiency. Finally, a parametric study was conducted to investigate the effect of each of the random variables on the statistical moment of structural stress response.

Statistical Modeling of Pretilt Angle Control on the Homogeneous Polyimide Surface as a Function of Rubbing Strength and Baking Temperature

  • Kang Hee-Jin;Lee Jung-Hwan;Hwang Jeoung-Yeon;Yun Il-Gu;Seo Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.81-86
    • /
    • 2006
  • In this paper, the response surface modeling of the control of the pretilt angle in the nematic liquid crystal on the homogeneous polyimide surface with different surface treatment is investigated. The pretilt angle is one of the main factors to determine the alignment of the liquid crystal display. The pretilt angle is measured to analyze the variation of the characteristics on the various process conditions. The rubbing strength and the hard baking temperature are considered as input factors. After the design of experiments is performed, the process model is then explored using the response surface methodology. The analysis of variance is used to analyze the statistical significance and the effect plots are also investigated to examine the relationship between the process parameters and the response.

Optimal Design of Permanent Magnet Linear Synchronous Motor(PMLSM) Considering Multiple Response by Response Surface Methodology(RSM) (영구자석 선형 동기전동기(PMLSM)의 반응표면법(RSM)을 이용한 다중 반응 최적설계)

  • Kim Sung-Il;Nam Hyuk;Kim Young-Kyoun;Hong Jung-Pyo;Cho Han-Ik
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1097-1099
    • /
    • 2004
  • This paper deals with the optimal design of a slotless type of permanent magnet linear synchronous motor (PMLSM). Response surface methodology, one of the optimization methods, is used to consider multiple response of the PMLSM. That is, it is applied to obtain more average thrust and less thrust ripple than prototype PMLSM. To analyze quickly, characteristic analysis of the PMLSM is performed by space harmonic method and final results of optimized PMLSM are compare with those of prototype PMLSM through finite element analysis.

  • PDF

Application of Response Surface Methodology for Modeling and Optimization of Surface Roughness and Electric Current Consumption in Turning Operation (선삭 작업에서 표면조도와 전류소모의 모델링 및 최적화를 위한 반응표면방법론의 응용)

  • Punuhsingon, Charles S.C.;Oh, Soo-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.56-68
    • /
    • 2014
  • This paper presents an experiment on the modeling, analysis, prediction and optimization of machining parameters used during the turning process of the low-carbon steel known as ST40. The parameters used to develop the model are the cutting speed, the feed rate, and the depth of the cut. The experiments were carried out under various conditions, with three level of parameters and two different treatments for each level (with and without a lubricant), to determine the effects of the parameters on the surface roughness and electric current consumption. These effects were investigated using response surface methodology (RSM). A second-order model is used to predict the values of the surface roughness and the electric current consumption from the results of experiments which collected preliminary data. The results of the experiment and the predictions of the surface roughness and electric current consumption under both treatments were found to be nearly identical. This result shows that the feed rate is the main factor that influences the surface roughness and electric current consumption.

Dynamic analysis of nanoscale beams including surface stress effects

  • Youcef, Djamel Ould;Kaci, Abdelhakim;Benzair, Abdelnour;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2018
  • In this article, an analytic non-classical model for the free vibrations of nanobeams accounting for surface stress effects is developed. The classical continuum mechanics fails to capture the surface energy effects and hence is not directly applicable at nanoscale. A general beam model based on Gurtin-Murdoch continuum surface elasticity theory is developed for the analysis of thin and thick beams. Thus, surface energy has a significant effect on the response of nanoscale structures, and is associated with their size-dependent behavior. To check the validity of the present analytic solution, the numerical results are compared with those obtained in the scientific literature. The influences of beam thickness, surface density, surface residual stress and surface elastic constants on the natural frequencies of nanobeams are also investigated. It is indicated that the effect of surface stress on the vibrational response of a nanobeam is dependent on its aspect ratio and thickness.

Reliability analysis of laterally loaded piles for an offshore wind turbine support structure using response surface methodology

  • Kim, Sun B.;Yoon, Gil L.;Yi, Jin H.;Lee, Jun H.
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.597-607
    • /
    • 2015
  • With an increasing demand of a renewable energy, new offshore wind turbine farms are being planned in some parts of the world. Foundation installation asks a significant cost of the total budget of offshore wind turbine (OWT) projects. Hence, a cost reduction from foundation parts is a key element when a cost-efficient designing of OWT budget. Mono-piles have been largely used, accounting about 78% of existing OWT foundations, because they are considered as a most economical alternative with a relatively shallow-water, less than 30 m of seawater depth. OWT design standards such as IEC, GL, DNV, API, and Eurocode are being developed in a form of reliability based limit state design method. In this paper, reliability analysis using the response surface method (RSM) and numerical simulation technique for an OWT mono-pile foundation were performed to investigate the sensitivities of mono-pile design parameters, and to find practical implications of RSM reliability analysis.

Determination of Crash Pulse to Minimize Injuries of Occupants and Optimization of Crash Components Using Response Surface Method (승객 상해를 최소화하는 충돌특성곡선의 결정 및 반응표면법을 이용한 충돌 부품의 최적설계)

  • 홍을표;신문균;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.116-129
    • /
    • 2001
  • Traditional occupant analysis has been performed with a pre-determined crash puse which is produced from a test and the involved components are designed based on the analysis resuls. The method has limitations in that the design does not have much freedom. Howrver, if a good crash pulse is proposed, the body structure can be modified to generate the crash pulse. Therefore, it is assumed that the crash pulse can be changed to imptove the occupant crash performance. A preferable crash pulse is determined to minimize the occupant injuty. A constraint is established to keep the phenomena of physics valid. The response surface method(RSM) is adopted for the optimization process. An RSM in a commercial code is utilzed by interfacing with an in-house occupant analysis program called SAFE(Safety Analysis For occupant crash Enviroment). Design of involved components called is carried out through optimization with the RSM. The advantages of the RSM are investigated as opposed to other methods, and the tesults are compared. Also, the design under the new crach pulse is compared with that trom the pre-detetmined pulse.

  • PDF

A Procedure for Statistical Thermal Margin Analysis Using Response Surface Method and Monte Carlo Technique (반응 표면 및 Monte Carlo 방법을 이용한 통계적 열여유도 분석 방법)

  • Hyun Koon Kim;Young Whan Lee;Tae Woon Kim;Soon Heung Chang
    • Nuclear Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.38-47
    • /
    • 1986
  • A statistical procedure, which uses response surface method and Monte Carlo simulation technique, is proposed for analyzing the thermal margin of light water reactor core. The statistical thermal margin analysis method performs the best.estimate thermal margin evaluation by the probabilistic treatment of uncertainties of input parameters. This methodology is applied to KNU-1 core thermal margin analysis under the steady state nominal operating condition. Also discussed are the comparisons with conventional deterministic method and Improved Thermal Design Procedure of Westinghouse. It is deduced from this study that the response surface method is useful for performing the statistical thermal margin analysis and that thermal margin improvement is assured through this procedure.

  • PDF

Design Optimization of Roller Straightening Process for Steel Cord using Response Surface Methodology (반응표면법을 이용한 스틸코드의 롤러교정기 설계 최적화)

  • Lee, Jong-Sup;Huh, Hoon;Lee, Jun-Wu;Bae, Jong-Gu;Kim, Deuk-Tae
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.238-241
    • /
    • 2007
  • A roller straightening process is a metal forming technique to improve the geometric quality of products such as straightness and flatness. The geometrical quality can be enhanced by eliminating unnecessary deformations produced during upstream manufacturing processes and minimizing any detrimental internal stress during the roller straightening process. The quality of steel cords can be achieved by the roller straightening depends the process parameters. Such process parameters are the roll intermesh, the roll pitch, the diameter of rolls, the number of rolls and the applied tension. This paper is concerned with the design optimization of the roller straightening process for steel cords with the aid of elasto-plastic finite element analysis. Effects of the process parameters on the straightness of the steel cord are investigated by the finite element analysis. Based on the analysis results, the optimization of the roller straightening process is performed by the response surface method. The roller straightening process using optimum design parameters is carried out in order to confirm the quality of the final products.

  • PDF

Optimization of the Plate in a Fuel Cell Using the Response Surface Method (반응표면법을 이용한 연료전지 분리판의 최적설계)

  • Han, O-Hyun;Park, Jung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.510-515
    • /
    • 2004
  • A proton exchange membrane fuel cells(PEMFC) operate at low temperature, allowing for faster startups and immediate response to change in the demand for power, and also deliver high power density. To maximize economical efficiency in PEMPC, it is necessary to the optimization. Response surface method(RSM) has non-gradient and fast convergency characteristics. Sampling points are extracted by design of experiments using Central Composite Method. In this paper, it is shown that the optimization is required for the design study of the PEMFC.

  • PDF