• Title/Summary/Keyword: Surface plasmon resonance

Search Result 312, Processing Time 0.025 seconds

Aptamer Based SPREETA Sensor for the Detection of Porphyromonas gingivalis G-Protein

  • Suk-Gyun Park;Hyun Ju Lee;Taeksoo Ji;Kyungbaek Kim;Seung-Ho Ohk
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.289-295
    • /
    • 2024
  • We have developed an aptamer that specifically binds to Porphyromonas gingivalis to reduce the cellular damage caused by P. gingivalis infection and applied it as a biosensor. P. gingivalis is one of the major pathogens causing destructive periodontal disease among the periodontal microorganisms constituting complex biofilms. Porphyromonas gingivalis G-protein (PGP) known to play an important role in the transmission of germs was used as a target protein for the screening of aptamer. The aptamer that has binds to the G-protein of P. gingivalis, was screened and developed through the Systemic Evolution of Ligands by Exponential Energy (SELEX) method. Modified-Western blot analysis was performed with the aptamer which consisted of 38 single-stranded DNA to confirm the selectivity. ELONA (enzyme linked oligonucleotide assay) used to confirm that the aptamer was sensitive to PGP even at low concentration of 1 ㎍/ml. For the rapid detection of P. gingivalis, we constructed a surface plasmon resonance biosensor with SPREETA using the PGP aptamer. It was confirmed that PGP could be detected as low concentration as at 0.1 pM, which is the minimum concentration of aptamer sensor within 5 min. Based on these results, we have constructed a SPREETA biosensor based on aptamer that can bind to P. gingivalis G-protein. It can be used as an infection diagnosis system to rapidly diagnose and analyze oral diseases caused by P. gingivalis.

The development of anti-DR4 single-chain Fv (ScFv) antibody fused to Streptavidin (Streptavidin이 융합된 DR4 항원에 특이적인 single-chain Fv 항체의 개발)

  • Kim, Seo Woo;Wu, Sangwook;Kim, Jin-Kyoo
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.330-342
    • /
    • 2018
  • The Streptavidin and Biotin system has been studied most extensively as the high affinity non-covalent binding of Biotin to STR ($K_D=10^{-14}M$) and four Biotin binding sites in tetrameric Streptavidin makes this system useful for the production of multivalent antibody. For the application of this system, we cloned Streptavidin amplified from Streptomyces avidinii chromosome by PCR and fused to gene of hAY4 single-chain Fv antibody specific to death receptor 4 (DR4) which is a receptor for tumor necrosis factor ${\alpha}$ related apoptosis induced ligand. The hAY4 single-chain Fv antibody fused to Streptavidin expressed in Escherichia coli showed 43 kDa monomer in heated SDS-PAGE. However, this fusion protein shown in both non-heated SDS-PAGE and Size-exclusion chromatography exhibited 172 kDa as a tetramer suggesting that natural tetramerization of Streptavidin by non-covalent association induced hAY4 single-chain Fv tetramerization. This fusion protein retained a Biotin binding activity similar to natural Streptavidin as shown in Ouchterlony assay and ELISA. Death receptor 4 antigen binding activity of purified hAY4 single-chain Fv fused to Streptavidin was also confirmed by ELISA and Westernblot. In addition, surface plasmon resonance analysis showed 60-fold higher antigen binding affinity of the hAY4-STR than monomeric hAY4 ScFv due to tetramerization. In summary, hAY4 single-chain Fv fused to Streptavidin fusion protein was successfully expressed and purified as a soluble tetramer in E. coli and showed both Biotin and DR4 antigen binding activity suggesting possible production of bifunctional and tetrameric ScFv antibody.

Diurnal and Nocturnal Behaviour of Airborne Cryptomeria japonica Pollen Grains and the Allergenic Species in Urban Atmosphere of Saitama, Japan

  • Wang, Qingyue;Nakamura, Shinichi;Lu, Senlin;Nakajima, Daisuke;Suzuki, Miho;Sekiguchi, Kazuhiko;Miwa, Makoto
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.65-71
    • /
    • 2013
  • Japanese cedar (Cryptomeria japonica) pollinosis is the most popular pollinosis in Japan. It has been reported that Cryptomeria japonica pollen allergenic species are suspended as fine particles in the urban atmosphere. These allergenic fine particles are responsible for inducing asthma by breaking into the lower respiratory tract. It has also been found that pollinosis symptoms on the sufferers appear mainly at night-time by the results from epidemiological studies. However, the exact reason for these phenomena is not yet clarified. In this study, the diurnal and nocturnal behaviours of Cryptomeria japonica pollen grains and their allergenic species in the urban area of Saitama city of Kanto Plain were investigated. Airborne pollen grains and allergenic Cry j 1 concentrations in total suspended particulate matter (TSP) were investigated at two sampling sites, a heavy traffic road (roadside site) and at the balcony of the $10^{th}$ floor of the Building of Research and Project of Saitama University (general urban site). The latter sampling site where located about 300 m away from the roadside site was used as a general urban site unaffected by automobile traffic. The airborne pollen counts were measured with a real-time pollen monitor. Cry j 1 particles were collected with two high volume air samplers, and these concentrations were measured by surface plasmon resonance method with a Biacore J system. The diurnal variation of the airborne pollen counts was similar to the trends of temperature and wind speed during the day-time; whereas its tendency with wind speed trend was not observed during the night-time. Airborne pollen counts were lower with northern wind than with southern wind because the pollen comes from the mountainous areas, and the mountains in the south are closer, about half the distance to the northern mountains. It is suggested that the peaks of airborne pollen counts during night-time in the sampling site occurred by transport of pollen grains released during day-time in the mountainous forest areas, located c.a. 100 km away from the sampling site. On the roadside site the allergenic Cry j 1 concentrations were higher than at the general urban site, nevertheless pollen grains counts were lower. These results suggested that worsening of pollinosis symptoms during night-time in urban area was caused by transport of pollen grains during day-time in the mountainous forest areas. Moreover, pollen allergenic species become different morphology from pollen grain at roadside site, and the subsequent pollen grains re-suspension by automobile traffic.

Anaerobic Bacterial Degradation for the Effective Utilization of Biomass

  • Ohmiya, Kunio;Sakka, Kazuo;Kimura, Tetsuya
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.482-493
    • /
    • 2005
  • Biomass is originally photosynthesized from inorgainic compounds such as $CO_2$, minerals, water and solar energy. Recent studies have shown that anaerobic bacteria have the ability to convert recalcitrant biomass such as cellullosic or chitinoic materials to useful compounds. The biomass containing agricultural waste, unutilized wood and other garbage is expected to utilize as feed, food and fuel by microbial degradation and other metabolic functions. In this study we isolated several anaerobic, cellulolytic and chitinolytic bacteria from rumen fluid, compost and soil to study their related enzymes and genes. The anaerobic and cellulolytic bacteria, Clostridium thermocellum, Clostridium stercorarium, and Clostridium josui, were isolated from compost and the chitinolytic Clostridium paraputrificum from beach soil and Ruminococcus albus was isolated from cow rumen. After isolation, novel cellulase and xylanase genes from these anaerobes were cloned and expressed in Escherichia coli. The properties of the cloned enzymes showed that some of them were the components of the enzyme (cellulase) complex, i.e., cellulosome, which is known to form complexes by binding cohesin domains on the cellulase integrating protein (Cip: or core protein) and dockerin domains on the enzymes. Several dockerin and cohesin polypeptides were independently produced by E. coli and their binding properties were specified with BIAcore by measuring surface plasmon resonance. Three pairs of cohesin-dockerin with differing binding specificities were selected. Two of their genes encoding their respective cohesin polypeptides were combined to one gene and expressed in E. coli as a chimeric core protein, on which two dockerin-dehydrogenase chimeras, the dockerin-formaldehyde dehydrogenase and the dockerin-NADH dehydrogenase are planning to bind for catalyzing $CO_2$ reduction to formic acid by feeding NADH. This reaction may represent a novel strategy for the reduction of the green house gases. Enzymes from the anaerobes were also expressed in tobacco and rice plants. The activity of a xylanase from C. stercorarium was detected in leaves, stems, and rice grain under the control of CaMV35S promoter. The digestibility of transgenic rice leaves in goat rumen was slightly accelerated. C. paraputrificum was found to solubilize shrimp shells and chitin to generate hydrogen gas. Hydrogen productivity (1.7 mol $H_2/mol$ glucos) of the organism was improved up to 1.8 times by additional expression of the own hydrogenase gene in C. paraputrficum using a modified vector of Clostridiu, perfringens. The hydrygen producing microflora from soil, garbage and dried pelletted garbage, known as refuse derived fuel(RDF), were also found to be effective in converting biomass waste to hydrogen gas.

Characteristic of ITO-Ag-ITO multilayer thin films grown by linear facing target sputtering system (선형대향타겟 스퍼터로 성장시킨 ITO-Ag-ITO 다층박막의 특성 연구)

  • Jeong, Jin-A;Choi, Kwang-Hyuk;Lee, Jae-Young;Lee, Jung-Hwan;Bae, Hyo-Dae;Tak, Yoon-Heung;Ye, Min-Su;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.66-66
    • /
    • 2008
  • 본 연구에서는 ITO/Ag/ITO 다층 박막을 유기발광소자와 플렉시블 광전소자의 전극으로 적용하기 위하여 선형 대항 타겟 스퍼터(Linear facing target sputter) 시스템을 이용하여 성막하였고, ITO/Ag/ITO 다층박막의 전기적, 광학적, 구조적 특성을 분석하였다. 선형 대항 타겟 스퍼터 시스템은 강한 일방항의 자계와 타겟에 걸린 음극에 의해 전자의 회전, 왕복 운동이 가능해 마주보는 두 ITO 타겟 사이에 고밀도의 플라즈마를 구속 시켜 플라즈마 데미지 없이 산화물 박막을 성막시킬 수 있는 장치이다. 대항 타겟 스퍼터 시스템을 이용하여 성막한 ITO 전극을 DC power, working pressure, Ar/O2 ratio 에 따른 특성을 각각 분석하였다. glass 기판위에 최적화된 ITO 전극을 bottom layer로 두고, bottom ITO layer 위에 thermal evaporation 을 이용하여 Ag 박막을 6~20nm의 조건에 따라 두께를 다르게 성막하고, Ag 박막을 성막한 후에 다시 bottom ITO 전극과 같은 조건으로 ITO 전극을 top layer로 성막 하였다. 두 비정질의 ITO 전극 사이에 매우 앓은 Ag 박막을 성막 함으로 해서 glass 기판위에 ITO/Ag/ITO 다층 박막전극은 매우 낮은 저항과 높은 투과도를 나타낸다. ITO/Ag/ITO 박막의 전기적 광학적 특성을 보기 위해 hall measurement와 UV/visible spectrometer 분석을 각각 진행하였다. ITO/Ag/ITO 다층 박막 전극이 매우 얇은 두께임에도 불구하고 $4\Omega$/sq.의 낮은 면저항과 85%의 높은 투과도를 나타내는 이유는 ITO/Ag/ITO 전극 사이에 있는 Ag층의 표면 플라즈몬 공명 (SPR) 현상으로 설명할 수 있다. ITO/Ag/ITO 전극의 Ag의 거동을 분석 하기위해 FESEM분석과 synchrotron x-ray scattering 분석을 하였다. ITO/Ag/ITO 전극의 Ag층이 islands의 모양에서 연속적으로 연결되는 변화과정 중에 SPR현상이 일어남을 알 수 있다. 여기서, 대항 타겟 스퍼터 시스템을 이용하여 성막한 ITO/Ag/ITO 다층박막을 OLED 또는 inverted OLEDs의 top 전극으로의 적용 가능성을 보이고 있다.

  • PDF

Solid-phase PEGylation for Site-Specific Modification of Recombinant Interferon ${\alpha}$-2a : Process Performance, Characterization, and In-vitro Bioactivity (재조합 인터페론 알파-2a의 부위 특이적 수식을 위한 고체상 PEGylation : 공정 성능, 특성화 및 생물학적 활성)

  • Lee, Byung-Kook;Kwon, Jin-Sook;Lee, E.K.
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.133-139
    • /
    • 2006
  • In 'solid-phase' PEGylation, the conjugation reaction occurs as the proteins are attached to a solid matrix, and thus it can have distinct advantages over the conventional, solution-phase process. We report a case study: rhIFN-${\alpha}$-2a was first adsorbed to cation exchange resin and then N-terminally PEGylated by aldehyde mPEG of 5, 10, and 20 kD through reductive alkylation. After the PEGylation, salt gradient elution efficiently recovered the mono-PEGylate in a purified form from the unwanted species such as unmodified IFN, unreacted PEG, and others. The mono-PEGylation and its purification were integrated in a single chromatographic step. Depending on the molecular weight of the mPEG aldehyde used, the mono-PEGylation yield ranged 50-64%. We could overcome the major problems of random, or uncontrollable, multi-PEGylation and the post-PEGylation purification difficulties associated with the solution-phase process. N-terminal sequencing and MALDI-TOF MS confirmed that a PEG molecule was conjugated only to the N-terminus. Compared with the unmodified IFN, the mono-PEGylate showed the reduced anti-viral activity as measured by the cell proliferation assay. The bioactivity was reduced more as the higher molecular weight PEG was conjugated. Immunoreactivity, evaluated indirectly by antibody binding activity using a surface plasmon resonance biosensor, also decreased. Nevertheless, trypsin resistance as well as thermal stability was considerably improved.

Evaluation of Near-infrared Fluorescence-conjugated Peptides for Visualization of Human Epidermal Receptor 2-overexpressed Gastric Cancer

  • Jeong, Kyoungyun;Kong, Seong-Ho;Bae, Seong-Woo;Park, Cho Rong;Berlth, Felix;Shin, Jae Hwan;Lee, Yun-Sang;Youn, Hyewon;Koo, Eunhee;Suh, Yun-Suhk;Park, Do Joong;Lee, Hyuk-Joon;Yang, Han-Kwang
    • Journal of Gastric Cancer
    • /
    • v.21 no.2
    • /
    • pp.191-202
    • /
    • 2021
  • Purpose: A near-infrared (NIR) fluorescence imaging is a promising tool for cancer-specific image guided surgery. Human epidermal receptor 2 (HER2) is one of the candidate markers for gastric cancer. In this study, we aimed to synthesize HER2-specific NIR fluorescence probes and evaluate their applicability in cancer-specific image-guided surgeries using an animal model. Materials and Methods: An NIR dye emitting light at 800 nm (IRDye800CW; Li-COR) was conjugated to trastuzumab and an HER2-specific affibody using a click mechanism. HER2 affinity was assessed using surface plasmon resonance. Gastric cancer cell lines (NCI-N87 and SNU-601) were subcutaneously implanted into female BALB/c nu (6-8 weeks old) mice. After intravenous injection of the probes, biodistribution and fluorescence signal intensity were measured using Lumina II (Perkin Elmer) and a laparoscopic NIR camera (InTheSmart). Results: Trastuzumab-IRDye800CW exhibited high affinity for HER2 (KD=2.093(3) pM). Fluorescence signals in the liver and spleen were the highest at 24 hours post injection, while the signal in HER2-positive tumor cells increased until 72 hours, as assessed using the Lumina II system. The signal corresponding to the tumor was visually identified and clearly differentiated from the liver after 72 hours using a laparoscopic NIR camera. Affibody-IRDye800CW also exhibited high affinity for HER2 (KD=4.71 nM); however, the signal was not identified in the tumor, probably owing to rapid renal clearance. Conclusions: Trastuzumab-IRDye800CW may be used as a potential NIR probe that can be injected 2-3 days before surgery to obtain high HER2-specific signal and contrast. Affibody-based NIR probes may require modifications to enhance mobilization to the tumor site.

Ginsenoside Ro, an oleanolic saponin of Panax ginseng, exerts anti-inflammatory effect by direct inhibiting toll like receptor 4 signaling pathway

  • Xu, Hong-Lin;Chen, Guang-Hong;Wu, Yu-Ting;Xie, Ling-Peng;Tan, Zhang-Bin;Liu, Bin;Fan, Hui-Jie;Chen, Hong-Mei;Huang, Gui-Qiong;Liu, Min;Zhou, Ying-Chun
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.156-166
    • /
    • 2022
  • Background: Panax ginseng Meyer (P. ginseng), a herb distributed in Korea, China and Japan, exerts benefits on diverse inflammatory conditions. However, the underlying mechanism and active ingredients remains largely unclear. Herein, we aimed to explore the active ingredients of P. ginseng against inflammation and elucidate underlying mechanisms. Methods: Inflammation model was constructed by lipopolysaccharide (LPS) in C57BL/6 mice and RAW264.7 macrophages. Molecular docking, molecular dynamics, surface plasmon resonance imaging (SPRi) and immunofluorescence were utilized to predict active component. Results: P. ginseng significantly inhibited LPS-induced lung injury and the expression of proinflammatory factors, including TNF-α, IL-6 and IL-1β. Additionally, P. ginseng blocked fluorescencelabeled LPS (LPS488) binding to the membranes of RAW264.7 macrophages, the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). Furthermore, molecular docking demonstrated that ginsenoside Ro (GRo) docked into the LPS binding site of toll like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD2) complex. Molecular dynamic simulations showed that the MD2-GRo binding conformation was stable. SPRi demonstrated an excellent interaction between TLR4/ MD2 complex and GRo (KD value of 1.16 × 10-9 M). GRo significantly inhibited LPS488 binding to cell membranes. Further studies showed that GRo markedly suppressed LPS-triggered lung injury, the transcription and secretion levels of TNF-α, IL-6 and IL-1β. Moreover, the phosphorylation of NF-κB and MAPKs as well as the p65 subunit nuclear translocation were inhibited by GRo dose-dependently. Conclusion: Our results suggest that GRo exerts anti-inflammation actions by direct inhibition of TLR4 signaling pathway.

20(S)-ginsenoside Rg3 exerts anti-fibrotic effect after myocardial infarction by alleviation of fibroblasts proliferation and collagen deposition through TGFBR1 signaling pathways

  • Honglin Xu;Haifeng Miao;Guanghong Chen;Guoyong Zhang;Yue Hua;Yuting Wu;Tong Xu;Xin Han;Changlei Hu;Mingjie Pang;Leyi Tan;Bin Liu;Yingchun Zhou
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.743-754
    • /
    • 2023
  • Background: Myocardial fibrosis post-myocardial infarction (MI) can induce maladaptive cardiac remodeling as well as heart failure. Although 20(S)-ginsenoside Rg3 (Rg3) has been applied to cardiovascular diseases, its efficacy and specific molecular mechanism in myocardial fibrosis are largely unknown. Herein, we aimed to explore whether TGFBR1 signaling was involved in Rg3's anti-fibrotic effect post-MI. Methods: Left anterior descending (LAD) coronary artery ligation-induced MI mice and TGF-β1-stimulated primary cardiac fibroblasts (CFs) were adopted. Echocardiography, hematoxlin-eosin and Masson staining, Western-blot and immunohistochemistry, CCK8 and Edu were used to study the effects of Rg3 on myocardial fibrosis and TGFBR1 signaling. The combination mechanism of Rg3 and TGFBR1 was explored by surface plasmon resonance imaging (SPRi). Moreover, myocardial Tgfbr1-deficient mice and TGFBR1 adenovirus were adopted to confirm the pharmacological mechanism of Rg3. Results: In vivo experiments, Rg3 ameliorated myocardial fibrosis and hypertrophy and enhanced cardiac function. Rg3-TGFBR1 had the 1.78×10-7 M equilibrium dissociation constant based on SPRi analysis, and Rg3 inhibited the activation of TGFBR1/Smads signaling dose-dependently. Cardiac-specific Tgfbr1 knockdown abolished Rg3's protection against myocardial fibrosis post-MI. In addition, Rg3 downregulated the TGF-β1-mediated CFs growth together with collagen production in vitro through TGFBR1 signaling. Moreover, TGFBR1 adenovirus partially blocked the inhibitory effect of Rg3. Conclusion: Rg3 improves myocardial fibrosis and cardiac function through suppressing CFs proliferation along with collagen deposition by inactivation of TGFBR1 pathway.

Biosynthesis of Silver Nanoparticles Using Microorganism (미생물을 이용한 은 나노입자 생합성)

  • Yoo, Ji-Yeon;Jang, Eun-Young;Hong, Chang-Oh;Kim, Keun-Ki;Park, Hyean-Cheal;Lee, Sang-Mong;Kim, Young-Gyun;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1354-1360
    • /
    • 2018
  • The aim of this study was to develop a simple, environmentally friendly synthesis of silver nanoparticles (SNPs) without the use of chemical reducing agents by exploiting the extracellular synthesis of SNPs in a culture supernatant of Bacillus thuringiensis CH3. Addition of 5 mM $AgNO_3$ to the culture supernatant at a ratio of 1:1 caused a change in the maximum absorbance at 418 nm corresponding to the surface plasmon resonance of the SNPs. Synthesis of SNPs occurred within 8 hr and reached a maximum at 40-48 hr. The structural characteristics of the synthesized SNPs were investigated by various instrumental analysis. FESEM observations showed the formation of well-dispersed spherical SNPs, and the presence of silver was confirmed by EDS analysis. The X-ray diffraction spectrum indicated that the SNPs had a face-centered cubic crystal lattice. The average SNP size, calculated using DLS, was about 51.3 nm and ranged from 19 to 110 nm. The synthesized SNPs exhibited a broad spectrum of antimicrobial activity against a variety of pathogenic Gram-positive and Gram-negative bacteria and yeasts. The highest antimicrobial activity was observed against C. albicans, a human pathogenic yeast. The FESEM observations determined that the antimicrobial activity of the SNPs was due to destruction of the cell surface, cytoplasmic leakage, and finally cell lysis. This study suggests that B. thuringiensis CH3 is a potential candidate for efficient synthesis of SNPs, and that these SNPs have potential uses in a variety of pharmaceutical applications.