• 제목/요약/키워드: Surface oxygen complexes

검색결과 23건 처리시간 0.037초

Rayon계 ACF의 표면 산소관능기 도입과 Primary amine의 흡착 거동 (Adsorption Behavior of Primary amine on Activated carbon Rayon-fiber Surfaces as Induced by Oxygen Functional Complexes)

  • 김병구;신해근;서정규;이문용;지상운
    • 한국연초학회지
    • /
    • 제31권1호
    • /
    • pp.9-17
    • /
    • 2009
  • Activated carbon fiber (ACF) was surface modified by nitric acid to improve the adsorption efficiency of the propylamine. Functional groups and textural properties of modified ACF were investigated. The total surface acidity increased about 7 times to that of as-received ACF by modification with 1 M nitric acid solution, carboxylic and phenolic groups mainly increased. However, the specific surface areas and the total pore volumes of the modified ACFs were decreased by 5-8% due to the increased blocking (or demolition) of micropores in the presence of newly introduced complexes. Despite the decrease of textural properties, it was found that the amount of propylamine adsorbed by the modified ACFs was increased by approximately 17%. The oxygen and nitrogen contents on the modified ACF increased by 1.5 and 3 times compared with the as-received ACF. From the XPS results, it was observed that propylamine reacted with strong or weak acidic groups, such as -COOH or -OH on the ACF surfaces, resulting in the formation of pyrrolic-, pyridonic- or pyridine-like structures.

LIMITED OXIDATION OF IRRADIATED GRAPHITE WASTE TO REMOVE SURFACE CARBON-14

  • Smith, Tara E.;Mccrory, Shilo;Dunzik-Gougar, Mary Lou
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.211-218
    • /
    • 2013
  • Large quantities of irradiated graphite waste from graphite-moderated nuclear reactors exist and are expected to increase in the case of High Temperature Reactor (HTR) deployment [1,2]. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 ($^{14}C$), with a half-life of 5730 years. Fachinger et al. [2] have demonstrated that thermal treatment of irradiated graphite removes a significant fraction of the $^{14}C$, which tends to be concentrated on the graphite surface. During thermal treatment, graphite surface carbon atoms interact with naturally adsorbed oxygen complexes to create $CO_x$ gases, i.e. "gasify" graphite. The effectiveness of this process is highly dependent on the availability of adsorbed oxygen compounds. The quantity and form of adsorbed oxygen complexes in pre- and post-irradiated graphite were studied using Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Xray Photoelectron Spectroscopy (XPS) in an effort to better understand the gasification process and to apply that understanding to process optimization. Adsorbed oxygen fragments were detected on both irradiated and unirradiated graphite; however, carbon-oxygen bonds were identified only on the irradiated material. This difference is likely due to a large number of carbon active sites associated with the higher lattice disorder resulting from irradiation. Results of XPS analysis also indicated the potential bonding structures of the oxygen fragments removed during surface impingement. Ester- and carboxyl-like structures were predominant among the identified oxygen-containing fragments. The indicated structures are consistent with those characterized by Fanning and Vannice [3] and later incorporated into an oxidation kinetics model by El-Genk and Tournier [4]. Based on the predicted desorption mechanisms of carbon oxides from the identified compounds, it is expected that a majority of the graphite should gasify as carbon monoxide (CO) rather than carbon dioxide ($CO_2$). Therefore, to optimize the efficiency of thermal treatment the graphite should be heated to temperatures above the surface decomposition temperature increasing the evolution of CO [4].

Enhanced binding between metals and CNT surface mediated by oxygen

  • 박미나;김병현;이광렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.61-61
    • /
    • 2010
  • In the present work, we present the optimized the hybrid structures of carbon nanotubes (CNTs) and metal nanocomposites including Cu, Al, Co and Ni using the first principle calculations based on the density functional theory. Introduction of CNTs into a metal matrix has been considered to improve the mechanical properties of the metal matrix. However, the binding energy between metals and pristine CNTs wall is known to be so small that the interfacial slip between CNTs and the matrix occurs at a relatively low external stress. The application of defective or functionalized CNTs has thus attracted great attention to enhance the interfacial strength of CNT/metal nanocomposites. Herein, we design the various hybrid structures of the single wall CNT/metal complexes and characterize the interaction between single wall CNTs and various metals such as Cu, Al, Co or Ni. First, differences in the binding energies or electronic structures of the CNT/metal complexes with the topological defects, such as the Stone-Wales and vacancy, are compared. Second, the characteristics of functionalized CNTs with various surface functional groups, such as -O, -COOH, -OH interacting with metals are investigated.We found that the binding energy can be enhanced by the surface functional group including oxygen since the oxygen atom can mediate and reinforce the interaction between carbon and metal. The binding energy is also greatly increased when it is absorbed on the defects of CNTs. These results strongly support the recent experimental work which suggested the oxygen on the interface playing an important role in the excellent mechanical properties of the CNT-Cu composite[1].

  • PDF

Silver Up-Take by Modified Pitches

  • Manocha, Satish M.;Patel, Mitesh
    • Carbon letters
    • /
    • 제3권1호
    • /
    • pp.13-16
    • /
    • 2002
  • The modification of coal-tar pitch has been carried out by heat treatment of pitch at different temperatures in the range ($300^{\circ}-400^{\circ}C$) for different times (2-5 hrs) in air and nitrogen. The pitch heat treated in air at lower temperature ($300^{\circ}C$) exhibit increase in softening point by $20^{\circ}C$ as compared to only $2^{\circ}C$ when treated in nitrogen. The changes are faster in air than in pure nitrogen. Pitch as such as well as after heat treatment were further treated with metal complexes by solution route. Silver intake has been found to increase from 0.5 to 0.8 % in nitrogen treated pitch while the uptake is found to decrease for pitches treated in air at $350^{\circ}C$ for 5 hrs. Experiments have also been made to incorporate silver into PAN and PAN-ox fibers through solution route. The metal intake has been found to be more in PAN-ox fibers than in PAN as such. Metal loaded carbon composites have been made by using metal loaded fibers as well as cokes. These composites as such exhibit higher surface oxygen complexes but decrease after activation.

  • PDF

Comparative Investigation of the Hydrogen Production of Zinc/carbons Prepared from Non-activated Carbon and Surface-modified Activated Carbon by Treatment with Zinc Salts

  • Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제44권11호
    • /
    • pp.607-612
    • /
    • 2007
  • Zn-AC and Zn-H-AC series prepared from non- and surface-modified activated carbon were investigated in terms of their hydrogen production capacity. An increase in the concentration of the zinc salts used with these series was shown to lead to a decrease in the values of the surface textural properties. The existence of zinc complexes on the surface was confirmed from an analysis of XRD data. The SEM micrographs of the two different sample types showed that the transformation of the carbon surface with an acid pre-treatment significantly change the metal contents on the surfaces of the carbon matrix. The EDX spectra indicated that all of the samples were richer in the amount of oxygen and zinc compared to any other elements. The results obtained using the Boehm's titration method showed that the positive introduction of the acidic groups on the carbon surfaces with the acid treatment is correlated with an increase in the amounts of zinc complexes with variation of the acidic groups. In terms of the hydrogen production performance, the volume fractions of the Zn-H-AC series were found to produce higher amounts than the Zn-AC series as a function of the metal contents considering the effects of the acid treatment.

Changes in Phosphorus and Sediment Oxygen Demand in Coastal Sediments Promoted by Functionalized Oyster Shell Powder as an Oxygen Release Compound

  • Kim, Beom-geun;Khirul, Md Akhte;Cho, Dae-chul;Kwon, Sung-Hyun
    • 한국환경과학회지
    • /
    • 제28권10호
    • /
    • pp.851-861
    • /
    • 2019
  • In this study, we performed a sediment elution experiment to evaluate water quality in terms of phosphorus, as influenced by the dissolved oxygen consumed by sediments. Three separate model column treatments, namely, raw, calcined, and sonicated oyster shell powders, were used in this experiment. Essential phosphorus fractions were examined to verify their roles in nutrient release from sediment based on correlation analyses. When treated with calcined or sonicated oyster shell powder, the sediment-water interface became "less anaerobic," thereby producing conditions conducive to partial oxidation and activities of aerobic bacteria. Sediment Oxygen Demand (SOD) was found to be closely correlated with the growth of algae, which confirmed an intermittent input of organic biomass at the sediment surface. SOD was positively correlated with exchangeable and loosely adsorbed phosphorus and organic phosphorus, owing to the accumulation of unbound algal biomass-derived phosphates in sediment, whereas it was negatively correlated with ferric iron-bound phosphorus or calcium fluorapatite-bound phosphorus, which were present in the form of "insoluble" complexes, thereby facilitating the free migration of sulfate-reducing bacteria or limiting the release from complexes, depending on applied local conditions. PCR-denaturing gradient gel electrophoresis revealed that iron-reducing bacteria were the dominant species in control and non-calcined oyster shell columns, whereas certain sulfur-oxidizing bacteria were identified in the column treated with calcined oyster powder.

나노다공성 금 표면상에서 구조 변화에 따른 전기화학적 산소환원 촉매활성 (Structure Dependent Electrocatalysis for Electroreduction of Oxygen at Nanoporous Gold Surfaces)

  • 최수희;최경민;김종원
    • 전기화학회지
    • /
    • 제15권2호
    • /
    • pp.83-89
    • /
    • 2012
  • 전기화학적 석출에 의해 Ag-Au 합금층을 전극표면에 형성한 후 진한 질산으로 Ag만을 녹여내는 기법으로 나노다공성 금(nanoporous gold, NPG) 구조를 만들어 전기화학적 산소환원에 대한 촉매현상을 관찰하였다. 석출과정의 전구체의 농도비를 달리하였을 때 나타나는 NPG 표면구조의 변화를 주사전자현미경으로 관찰하고 전기화학적 표면적을 측정하였다. 전기화학적 산소환원 촉매 효율은 NPG 표면의 구조에 따라 달라졌는데, Ag/Au 비율이 2.0에 해당하는 NPG 구조에서 가장 우수한 촉매 현상이 관찰 되었다. 표면구조의 변화에 따른 촉매 활성 변화에서 다공성 구조의 역할이 매우 큰 기여를 하는 반면 표면적의 변화는 큰 영향을 미치지 않았다. 최적 조건의 NPG 구조상의 전기화학적 산소환원 과정의 메커니즘을 회전원판전극 실험을 통해 관찰하였는데, 산성 조건에서 NPG 전극에서 전기화학적 산소환원은 과산화수소를 거쳐 물이 생성되는 2-단계 4-전자 환원 메커니즘으로 진행되었고 염기성 조건에서는 산소가 4개의 전자 전달을 통해 물로 직접적으로 환원 되었다.

Water Vapor Adsorption and Hydrogen Peroxide Decomposition on Date Pit Carbonization Products

  • Youssef, A.M.;El-Nabarawy, Th.;Ahmed, S.A. Sayed;Rashwan, W.E.
    • Carbon letters
    • /
    • 제6권4호
    • /
    • pp.227-233
    • /
    • 2005
  • Carbonization products C1, C2, C3, C4 and C5 were prepared by the carbonization of date pit in limited air, at 500, 600, 700, 800 and $1000^{\circ}C$, respectively. C1-V-600, C3-V-600, C1-V-1000 and C3-V-1000 were prepared by thermal treatment of C1 and C3 under vacuum at 600 and $1000^{\circ}C$. The textural properties were determined from nitrogen adsorption at 77 K and from carbon dioxide adsorption at 298 K. The surface pH, the FTIR spectra and the acid and base neutralization capacities of some carbons were investigated. The amounts of surface oxygen were determined by out-gassing the carbon-oxygen groups on the surface as $CO_2$ and CO. The adsorption of water vapor at 308 K on C1, C2, C3 and C4 was measured and the decomposition of $H_2O_2$ at 308 K was also investigated on C1, C2, C3, C4 and C5. The surface area and the total pore volume decreased with the rise of the carbonization temperature from 500 to $1000^{\circ}C$. The adsorption of water vapor is independent on the textural properties, while it is related to the amount of acidic carbon-oxygen groups on the surface. The catalytic activity of $H_2O_2$ decomposition does not depend on the textural properties, but directly related to the amount of basic carbon-oxygen complexes out-gassed as CO, at high temperatures.

  • PDF

Realistic adsorption behaviors of the copper onto the functionalized CNTs

  • 박미나;김병현;이광렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.476-476
    • /
    • 2011
  • Introduction of CNTs into a metal matrix has been considered to improve the mechanical properties of the metal matrix. However, the binding energy between metals and pristine CNTs wall is known to be so small that the interfacial slip between CNTs and the matrix occurs at a relatively low external stress. The interfacial strength between CNT and metal matrix is thus one of the key factors for successful development of the CNT/metal composites. Defective or functionalized CNT has been considered to enhance the interfacial strength of nanocomposites. In the present work, we design the various realistic hybrid structures of the single wall CNT/Cu complexes and characterize the interaction between single wall CNTs and Cu nano-particle and Cu13 cluster using first principle calculations. The characteristics of functionalized CNTs with various surface functional groups, such as -COOH, -OH, and -O interacting with Cu are investigated. We found that the binding energy can be enhanced by the surface functional group including oxygen since the oxygen atom can mediate and reinforce the interaction between carbon and Cu. These results strongly support the recent experimental work which suggested the oxygen on the interface playing an important role in the excellent mechanical properties of the CNT/Cu composite.

  • PDF

플라즈마 처리에 따른 언더필과 기판 사이의 접착 강도에 관한 연구 (Effect of Plasma Treatment on Adhesion Strength between Underfill and Substrate)

  • 노보인;정승부
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.13-15
    • /
    • 2006
  • The effects of plasma treatment on the surfaces of the FR-4 (Flame Resistant-4) and copper substrates are investigated in terms of X-ray photoelectron spectroscopy (XPS), contact angle, and atomic force microscopy (AFM). The adhesion strengths of the underfills/FR-4 substrate and underfills/copper substrate are also studied. As experimental results, the plasma treatments of FR-4 and copper substrate surfaces yield several oxygen complexes in hydrophilic surfaces, which can play an important role in increasing the surface polarity, wettability, and adhesion characteristics of the underfills/substrates.

  • PDF