• Title/Summary/Keyword: Surface muons

Search Result 5, Processing Time 0.018 seconds

Beam line design and beam transport calculation for the μSR facility at RAON

  • Pak, Kihong;Park, Junesic;Jeong, Jae Young;Kim, Jae Chang;Kim, Kyungmin;Kim, Yong Hyun;Son, Jaebum;Lee, Ju Hahn;Lee, Wonjun;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3344-3351
    • /
    • 2021
  • The Rare Isotope Science Project was launched in 2011 in Korea toward constructing the Rare isotope Accelerator complex for ON line experiments (RAON). RAON will house several experimental systems, including the Muon Spin Rotation/Relaxation/Resonance (μSR) facility in High Energy Experimental Building B. This facility will use 600-MeV protons with a maximum current of 660 pμA and beam power of 400 kW. The key μSR features will facilitate projects related to condensed-matter and nuclear physics. Typical experiments require a few million surface muons fully spin-polarized opposite to their momentum for application to small samples. Here, we describe the design of a muon transport beam line for delivering the requisite muon numbers and the electromagnetic-component specifications in the μSR facility. We determine the beam-line configuration via beam-optics calculations and the transmission efficiency via single-particle tracking simulations. The electromagnet properties, including fringe field effects, are applied for each component in the calculations. The designed surface-muon beamline is 17.3 m long, consisting of 2 solenoids, 2 dipoles affording 70° deflection, 9 quadrupoles, and a Wien filter to eliminate contaminant positrons. The average incident-muon flux and spin rotation angle are estimated as 5.2 × 106 μ+/s and 45°, respectively.

Study on the Applicability of Muography Exploration Technology in Underground Space Development (지하공간개발에서 뮤오그래피 탐사기술의 적용성에 관한 연구)

  • Seo, Seunghwan;Lim, Hyunsung;Ko, Younghun;Kwak, Kiseok;Chung, Moonkyung
    • Explosives and Blasting
    • /
    • v.39 no.4
    • /
    • pp.22-33
    • /
    • 2021
  • Recently, the frequent occurrence of ground subsidence in urban areas has caused increasing anxiety in residents and incurred significant social costs. Among the causes of ground subsidence, the rupture of old water and sewer pipes not only halts the operation of the buried pipes, but also leads to ground and water pollution problems. However, because most pipes are buried after construction and cannot be seen with the naked eye, the importance of maintenance has underestimated compared to other structures. In recent years, integrated physical exploration has been applied to the maintenance of underground pipes and structures. Currently, to investigate the internal conditions and vulnerable portions of the ground, consolidated physical surveys are executed. Consolidated physical surveys are analysis techniques that obtain various material data and add existing data using multiple physical surveys. Generally, in geotechnical engineering, consolidated physical surveys including electrical and surface wave surveys are adopted. However, it is difficult to investigate time-based changes in under ground using these surveys. In contrast, surveys using cosmic-ray muons have been used to scan the inner parts of nuclear reactors with penetration technology. Surveys using muons enable real-time observation without the influence of vibration or electricity. Such surveys have great potential for available technology because of their ability to investigate density distributions without requiring as much labor. In this paper, survey technologies using cosmic ray muons are introduced, and the possibilities of applying such technologies as new physical survey technologies for underground structures are suggested.

RF heating experiment to verify the design process of graphite target at the RAON µSR facility

  • Jae Young Jeong;Jae Chang Kim;Kihong Pak;Yong Hyun Kim;Yong Kyun Kim;Wonjun Lee;Ju Hahn Lee;Taek Jin Jang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3768-3774
    • /
    • 2023
  • The purpose of the target system for the muon spin rotation, relaxation, and resonance (µSR) facility at the Rare isotope Accelerator complex for ON-line experiments (RAON) is to induce the production of a significant number of surface muons in thermally stable experiments. The manufactured target system was installed at RAON in the Sindong area near Daejeon in 2021. The design was made conservatively with a sufficient margin of safety through ANSYS calculations; however, verification experiments had to be performed on the ANSYS calculations. Because the 600-MeV proton beam has not yet been provided, an alternative way to reproduce the calculation conditions was required. The radio frequency (RF) heating method, which has not yet been applied to the target verification experiment but has several advantages, was used. It was observed that the RF heating method has promise for testing the thermal stability of the target, and whether the target system design process was performed conservatively enough was verified by comparing the RF heating experiments with the ANSYS calculations.

Neutron Monitor as a New Instrument for KSWPC

  • Oh, Su-Yeon;Yi, Yu;Kim, Yong-Kyun;Bieber, John W;Cho, Kyung-Seok
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.34.1-34.1
    • /
    • 2008
  • Cosmic ray (CR)s are energetic particles that are found in space and filter through our atmosphere. They are classified with galactic cosmic ray (GCR)s and solar cosmic ray (SCR)s from their origins. The process of a CR particle colliding with particles in our atmosphere and disintegrating into smaller pions, muons, neutrons, and the like, is called a cosmic ray shower. These particles can be measured on the Earth's surface by neutron monitor (NM)s. Regarding with the space weather, there are common types of short term variation called a Forbush decrease (FD) and a Ground Level Enhancement (GLE). In this talk, we will briefly introduce our recent studies on CRs observed by NM: (1) simultaneity of FD depending on solar wind interaction, (2) an association between GLE and solar proton events, and (3) diurnal variation of the GCR depending on geomagnetic cutoff rigidity. NM will provide a crucial information for the Korea Space Weather Prediction Center (KSWPC).

  • PDF

Design and fabrication of beam dumps at the µSR facility of RAON for high-energy proton absorption

  • Jae Chang Kim;Jae Young Jeong;Kihong Pak;Yong Hyun Kim;Junesic Park;Ju Hahn Lee;Yong Kyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3692-3699
    • /
    • 2023
  • The Rare isotope Accelerator complex for ON-line experiments in Korea houses several accelerator complexes. Among them, the µSR facility will be initially equipped with a 600 MeV and 100 kW proton beam to generate surface muons, and will be upgraded to 400 kW with the same energy. Accelerated proton beams lose approximately 20% of the power at the target, and the remaining power is concentrated in the beam direction. Therefore, to ensure safe operation of the facility, concentrated protons must be distributed and absorbed at the beam dump. Additionally, effective dose levels must be lower than the legal standard, and the beam dumps used at 100 kW should be reused at 400 kW to minimize the generation of radioactive waste. In this study, we introduce a tailored method for designing beam dumps based on the characteristics of the µSR facility. To optimize the geometry, the absorbed power and effective dose were calculated using the MCNP6 code. The temperature and stress were determined using the ANSYS Mechanical code. Thus, the beam dump design consists of six structures when operated at 100 kW, and a 400 kW beam dump consisting of 24 structures was developed by reusing the 100 kW beam dump.