• 제목/요약/키워드: Surface micro-machining

검색결과 373건 처리시간 0.034초

표면 거칠기에 따른 마이크로 채널의 유속에 관한 연구 (A Study on the Flow Velocity of Micro Channels Depending on Surface Roughness)

  • 박현기;김종민;홍민성
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.59-64
    • /
    • 2008
  • Micro machining can manufacture complex shapes with high accuracy. Especially, this enables wide application of micro technology in various fields. For example, micro channels allow fluid transfer, which is a widely used technology. Therefore, liquidity research of flow in micro channels and micro channel manufacturing with use of various materials and cutting conditions has very important meaning. In this study, to find out correlation between fluid velocity in micro channels and surface roughness, we manufactured micro channels using micro end-mill and dropped ethanol into micro channels. We compared several surface roughness and fluid velocity in micro channels that were created by various processing conditions. Finally, we found out relationship between fluid velocity and surface roughness in micro channels of different materials.

마이크로 공구를 이용한 미세 구멍 가공기술 (Micro-hole Machining Technology for using Micro-tool)

  • 허남환;이석우;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1897-1901
    • /
    • 2003
  • Recently, with the development of semiconductor technology the miniaturization of products as well as parts and the products with high precision are being required. In addition as a national competitive power is increasingly effected by micro part development through micro machining and the secure of micro machining technology, the study of micro machining technology is being conducted in many countries. The goal of this study is to fabricate micro tool under the size of 30$\mu\textrm{m}$ and machine micro holes through micro tool fabrication by grinding, the application of ELID to grinding wheel and the measurement of surface roughness for micro tool.

  • PDF

대면적 미세형상 복합 가공기의 요소기술 (Element Technology of the Ultra-Precision Machine Tools for Machining the Large Surface Micro Features)

  • 송창규;박천홍;황주호;김병섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.86-93
    • /
    • 2005
  • In this paper, we discuss the merits of mechanical machining to generate micro features on large surfaces. An overseas technology trend related to the micro machining and dedicated machinery is also presented. We provide an overview of what characteristics the machinery is required to have to generate micro features on large surfaces and what kind of technical barriers need to be overcome to put the technology to practical use.

  • PDF

대면적 롤금형 미세패턴 가공공정 기술 (Micro Pattern Machining on Larger Surface Roll Molds)

  • 송기형;이동윤;박경희;이석우;김현철;제태진
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.7-12
    • /
    • 2012
  • In order to cope with the requirements of smaller patterns, larger surfaces and lower costs in the fields of displays, optics and energy, greater attentions are now being paid to the development of micro-pattern machining technology. Compared with flat moulds, large drums with micro patterns (roll moulds) have the advantages of short delivery, ease of manufacturing larger surfaces, and continuous moulding. This paper introduced the machining process technology of the roll moulds for display industry. The environmental effects were discussed and the importance of temperature maintenance was experimentally emphasized. The real time monitoring system for micro machining was introduced. A commercial solution was used to simulate the micro grooving and a deformation model of micro machined pattern was finally introduced.

재료변화에 따른 Micro-EDM에서의 가공성에 관한 연구 (A Study on the Machinability of the Micro-EDM Depending on the Materials)

  • 이상국;김태현;홍민성
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.658-665
    • /
    • 2012
  • Micro-EDM is widely used in metallic pattern, electronics, nuclear power and industry in the form of precision process. The improvement of Electro Discharge Machining has been on a steady progress since $19^{th}$ century. The technology has overcome the limits of the traditional precision process, enabling micro-EDM, micro electrolytic machining, micro drilling, micro punching and laser beam machining, which create versatile products with smaller sizes. What have been known about the major feature of Micro-EDM is high thermal energy so that their products are free from the hardness of their products as long as they are electrical conductor. However, each metal is suspected to have different features and natures even if they are created through the same procedure. In this thesis, the methodology of Micro-EDM and how to categorize them are explained. Also, the nature of the examined materials with surface shape and surface roughnes are analyzed. The results of the experiments are expected to understand surface roughness and workability of other materials for Micro-EDM.

초경합금의 미세 전해 가공 (Micro Electrochemical Machining of Tungsten Carbide)

  • 최세환;주종남;김보현
    • 한국정밀공학회지
    • /
    • 제23권12호
    • /
    • pp.111-116
    • /
    • 2006
  • Micro machining of tungsten carbide by electrochemical machining was studied. In ECM, machining conditions and electrolyte should be chosen carefully according to the property of workpiece materials. In this paper, sulfuric acid and nitric acid were used for tungsten carbide machining and machining characteristics were investigated according to machining conditions such as electrolyte, workpiece potential and applied pulse voltage. By using mixture of sulfuric acid and nitric acid, micro structures with sharp edge and good surface quality were obtained. Micro electrochemical turning was also introduced to fabricate micro shafts.

미세패턴 평판 금형가공 기술동향 (Trends of Flat Mold Machining Technology with Micro Pattern)

  • 제태진;최두선;전은채;박언석;최환진
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.1-6
    • /
    • 2012
  • Recent ultra-precision machining systems have nano-scale resolution, and can machine various shapes of complex structures using five-axis driven modules. These systems are also multi-functional, which can perform various processes such as planing, milling, turning et al. in one system. Micro machining technology using these systems is being developed for machining fine patterns, hybrid patterns and high aspect-ratio patterns on large-area molds with high productivity. These technology is and will be applied continuously to the fields of optics, display, energy, bio, communications and et al. Domestic and foreign trends of micro machining technologies for flat molds were investigated in this study. Especially, we focused on the types and the characteristics of ultra-precision machining systems and application fields of micro patterns machined by the machining system.

와이어 펄스전해가공에서 반응표면분석법을 응용한 미세박판의 홀 가공 최적 조건에 관한 연구 (A Study on the Optimal Conditions of Hole Machining of Microplate by Application of Response Surface Methodology in Wire-Pulse Electrochemical Machining)

  • 송우재;이은상
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.141-149
    • /
    • 2017
  • Due to the inaccuracy of micro-machining, various special processing methods have been investigated recently. Among them, pulse electrochemical machining is a promising machining method with the advantage of no residual stress and thermal deformation. Because the cross section of the wire electrode used in this study is circular, wire-pulse electrochemical machining is suitable for micro-hole machining. By applying the response surface methodology, the experimental plan was made of three factors and three levels: machining time, duty factor, and voltage. The regression equation was obtained through experiments. Then, by referring to the main effect diagram, we fixed the duty factor and machining time with little relevance, and solved the equation for the target 900 microns to obtain the voltage value. The results obtained from the response surface methodology were approximately those of the target value when the actual experiment was carried out. Therefore, it is concluded that the optimal conditions for hole processing can be obtained by the response surface methodology.