• 제목/요약/키워드: Surface heat exchange

검색결과 134건 처리시간 0.026초

원통형상에서의 표면복사 역해석에 관한 연구 (A Study on the Inverse Analysis of Surface Radiation in a Cylindrical Enclosure)

  • 김기완;백승욱;유홍선
    • 대한기계학회논문집B
    • /
    • 제28권6호
    • /
    • pp.705-712
    • /
    • 2004
  • An inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure has been conducted in this study. Net energy exchange method was used to calculate the radiative heat flux on each surface, and a hybrid genetic algorithm was adopted to minimize an objective function, which is expressed by sum of square errors between estimated and measured or desired heat fluxes on the design surface. We have examined the effects of the measurement error as well as the number of measurement points on the estimation accuracy. Furthermore, the effect of a variation in one boundary condition on the other boundary conditions was also investigated to get the same desired heat flux and temperature distribution on the design surface.

Reduction Kinetics of Gold Nanoparticles Synthesis via Plasma Discharge in Water

  • Sung-Min Kim;Woon-Young Lee;Jiyong Park;Sang-Yul Lee
    • 한국표면공학회지
    • /
    • 제56권6호
    • /
    • pp.386-392
    • /
    • 2023
  • In this work, we describe the reduction kinetics of gold nanoparticles synthesized by plasma discharge in aqueous solutions with varied voltages and precursor (HAuCl4) concentrations. The reduction rate of [AuCl4]- was determined by introducing NaBr to the gold colloidal solution synthesized by plasma discharge, serving as a catalyst in the reduction process. We observed that [AuCl4]- was completely reduced when its characteristic absorption peak at 380 nm disappeared, indicating the absence of [AuCl4]- for ligand exchange with NaBr. The reduction rate notably increased with the rise in discharge voltage, attributable to the intensified plasma generated by ionization and excitation, which in turn accelerated the reduction kinetics. Regarding precursor concentration, a lower concentration was found to retard the reduction reaction, significantly influencing the reduction kinetics due to the presence of active H+ and H radicals. Therefore, the production of strong plasma with high plasma density was observed to enhance the reduction kinetics, as evidenced by optical emission spectroscopy.

레이저 가공을 이용한 이온교환막 표면의 비전도성 마이크로 패턴의 제작 (Fabrication of Nonconductive Microscale Patterns on Ion Exchange Membrane by Laser Process)

  • 최진웅;조명현;김범주
    • 한국재료학회지
    • /
    • 제33권2호
    • /
    • pp.71-76
    • /
    • 2023
  • The electroconvection generated on the surface of an ion exchange membrane (IEM) is closely related to the electrical/chemical characteristics or topology of the IEM. In particular, when non-conductive regions are mixed on the surface of the IEM, it can have a great influence on the transfer of ions and the formation of nonlinear electroconvective vortices, so more theoretical and experimental studies are necessary. Here, we present a novel method for creating microscale non-conductive patterns on the IEM surface by laser ablation, and successfully visualize microscale vortices on the surface modified IEM. Microscale (~300 ㎛) patterns were fabricated by applying UV nanosecond laser processing to the non-conductive film, and were transferred to the surface of the IEM. In addition, UV nanosecond laser process parameters were investigated for obvious micro-pattern production, and operating conditions were optimized, such as minimizing the heat-affected zone. Through this study, we found that non-conductive patterns on the IEM surface could affect the generation and growth of electroconvective vortices. The experimental results provided in our study are expected to be a good reference for research related to the surface modification of IEMs, and are expected to be helpful for new engineering applications of electroconvective vortices using a non-conductive patterned IEM.

옥외 온열환경 평가를 위한 복사 연성 CFD 해석기법의 개요 (Development and application of an assessment tool for outdoor thermal environment)

  • 임종연;장현재;송두삼
    • 한국태양에너지학회 논문집
    • /
    • 제29권6호
    • /
    • pp.45-55
    • /
    • 2009
  • Deterioration of the outdoor thermal environment in urban areas has become worse and worse due to the urbanization and overpopulation, etc. Most of existing researches about thermal environment are focused on the indoor environment in which the radiation heat exchange is relatively constant. However, the outdoor thermal environment is changed with time passages, because the thermal environment is highly effected by solar radiation. Thus, to simulate the outdoor thermal environment with accuracy, the solar radiation calculation should be considered, and the radiation heat exchange between building surface and ground surface should be calculated. The purpose of this study is to develop the simulator that can be possible to evaluate the outdoor thermal environment and pedestrian thermal comfort. In this paper, a new method which is coupled with convective heat transfer simulation and radiative heat transfer simulation will be proposed. And the coupled simulation method will be described through case study for outdoor thermal environment. From the results of simulation, the coupled simulation proposed in this study can assess the outdoor thermal environment with accuracy.

지열을 이용한 외기부하저감시스템의 외기온도와 출구온도의 상관관계 분석 (A Study on the Correlation between Outdoor Air and Outlet Air Temperature in a Fresh Air Load Reduction System by Using Geothermal Energy)

  • 손원득;박경순
    • 설비공학논문집
    • /
    • 제22권9호
    • /
    • pp.620-627
    • /
    • 2010
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The fresh air is introduced into the double slab space and passes through the opening bored into the footing beam. The air is cooled by the heat exchange with the inside surface of the double slab space in summer, and heated in winter. This system not only reduces sensible heat load of the fresh air by heat exchange with earth but also reduces latent heat load of the fresh air by ad/de-sorption of underground double slab concrete. In this paper, we investigated the correlation between outdoor air temperature and outlet air temperature in the system. In conclusion, from the results of the high correlation we proposed a equation of regression for the outlet air temperature in the system by using linear regression analysis.

지열 이용 외기부하 저감시스템의 냉각 및 가열효과 예측 간이추정법에 관한 연구 (A Study on the Simplified Presumption Method for the Prediction of Cooling and Heating Performance in a Fresh Air Load Reduction System by Using Geothermal Energy)

  • 손원득;최영식
    • 한국산업융합학회 논문집
    • /
    • 제13권3호
    • /
    • pp.169-181
    • /
    • 2010
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The fresh air is introduced into the double slab space and passes through the opening bored into the footing beam. The air is cooled by the heat exchange with the inside surface of the double slab space in summer, and heated in winter. This system not only reduces sensible heat load of the fresh air by heat exchange with earth but also reduces latent heat load of the fresh air by ad/de-sorption of underground double slab concrete. In this paper, we proposed a simplified presumption method for the prediction of cooling and heating performance in the system. In conclusion the proposed method has been verified by comparing with the calculated value of the numerical analysis model by using nonlinear two-dimension hygroscopic question.

  • PDF

핀 튜브를 이용한 촉매 열 교환기의 연소특성 (THE COMBUSTION CHARACTERISTICS OF THE CATALYTIC HEAT EXCHANGER WITH FIN TUBES)

  • 유상필;서용석;조성준;강성규
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.169-177
    • /
    • 2000
  • The catalytic heat exchanger, which integrates two functions of heat generation and heat exchange into one equipment, was designed and its characteristics were investigated by the experiment and numerical simulation. The surface of the fin tube was deposited with Pd catalyst. The conversion of the mixture in the catalytic heat exchanger was more significantly affected by the inlet velocity of the mixture than by the inlet temperature and equivalence ratio of the mixture. It was found that the catalytic surface area of the fin tubes should be sufficiently increased to make the combustion intensity of the catalytic heat exchanger as high as possible. Results showed that the fin tubes, placed in the triangularly staggered form, should be adjusted so that the mixture flows uniformly over all the catalytic fin surfaces. Numerical simulation results demonstrated that the flow pattern of the mixture significantly affected the conversion of the mixture.

  • PDF

식물생장용 LED 램프의 적정 수냉조건 및 열교환량 분석 (Analysis of Optimum Water Cooling Conditions and Heat Exchange of LED Lamps for Plant Growth)

  • 박종호;이재수;김동억;김용현
    • Journal of Biosystems Engineering
    • /
    • 제36권5호
    • /
    • pp.334-341
    • /
    • 2011
  • This study was conducted to compare the characteristics of heat dissipated from LED lamps with water cooling method and natural cooling method in a closed-type plant production system (CPPS) and to determine the optimum water temperature and flow rate for LED lamps with water cooling method. The experiments were performed in CPPS maintained at temperature of $24^{\circ}C$ and humidity of 70%. As compared to the LED lamps operated at water temperature of $22.5{\pm}1.2^{\circ}C$ and flow rate of $1,521{\pm}3.3\;mL{\cdot}min^{-1}$, air temperature under LED lamps with natural cooling was approximately increased by $1^{\circ}C$ and photosynthetic photon flux was decreased by $10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. PPF illuminated from LED lamps was affected by forward voltage varied by the surface temperature of LED lamps. Forward voltage of LED lamps was decreased with increasing surface temperature and then PPF was proportionately decreased. Five levels ($14^{\circ}C,\;17^{\circ}C,\;20^{\circ}C,\;23^{\circ}C,\;26^{\circ}C$) of water temperature and three levels ($500\;mL{\cdot}min^{-1}$, $1,000\;mL{\cdot}min^{-1}$, $1,500\;mL{\cdot}min^{-1}$) of flow rate were provided to analyze the change of surface temperature and heat exchange of LED lamps. Heat exchange was increased with decreasing water temperature and increasing flow rate. At flow rate of $1,000-1,500\;mL{\cdot}min^{-1}$ and water temperature of 22.0-$22.6^{\circ}C$, surface temperature of LED lamps can be approached to $24^{\circ}C$ that was almost same as air temperature in CPPS. The calorific value generated from LED lamps used in the study was estimated to be $103.0\;kJ{\cdot}h^{-1}$.

착상을 고려한 극저온 질소-대기 열교환기의 해석 (Analysis of a Cryogenic Nitrogen-Ambient Air Heat Exchanger Including Frost Formation)

  • 최권일;장호명
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.825-834
    • /
    • 2000
  • A heat exchanger analysis is performed to investigate the heating characteristics of cryogenic nitrogen by ambient air for the purpose of cryogenic automotive propulsion. The heat exchanger is a concentric triple-passage for supercritical nitrogen, and the radial fins are attached on the outermost tube for the crossflow of ambient air. The temperature distribution is calculated for the nitrogen along the passage, including the real gas properties of nitrogen, the fluid convections and the conductions through the tube walls and the fins. Since the wall temperature of the outer (ambient side) tube is very low in most cases, a heavy frost can be formed on the surface, affecting the heat exchange performance. By the method of the similarity between the heat and the mass transfer of moist air, the frost growth and the time-dependent effectiveness of the heat exchanger are calculated for various operating conditions. It is concluded that the frost formation can augment the heating of nitrogen during the initial period because of the latent heat, then gradually degrades the heat exchange because of the increased thermal resistance. Practical design issues are discussed for the flow rate of nitrogen, the velocity and humidity of ambient air, and the sizes of the fin.

  • PDF

광합성과 증발산의 미기상학적 측정기술 (Technique for Estimating $CO_2$ and $H_2O$ Exchange between the Atmosphere and the Biosphere : Eddy Covariance Method)

  • Wonsik Kim
    • 한국농림기상학회:학술대회논문집
    • /
    • 한국농림기상학회 2003년도 춘계 학술발표논문집
    • /
    • pp.115-128
    • /
    • 2003
  • o What is the flux \ulcorner Flux is the transfer of a quantity per unit area per unit time. The quantities are mass, heat, moisture, momentum and pollutant in micrometeorology. Kinematic flux (Fluid). The reduction in wind speed due to frictional drag transfers momentum from the atmosphere to the surface, creating turbulence that mixes the air and transports heat and water from the surface into the lower atmosphere. (omitted)

  • PDF