• 제목/요약/키워드: Surface heat exchange

검색결과 133건 처리시간 0.022초

양이온 교환 및 염 함침을 통한 메조다공성 실리카와 유기-금속 구조체의 수분 흡착 특성 조절 (Control of Water-Adsorption Properties of Mesoporous Silica and MOF by Ion Exchange and Salt Impregnation)

  • 이은경;조강희;김상겸;임종성;김종남
    • 청정기술
    • /
    • 제24권1호
    • /
    • pp.55-62
    • /
    • 2018
  • $90^{\circ}C$ 이하의 저온열원 구동 수분 흡착식 냉방 시스템에 사용되는 흡착제는 효과적인 냉열 생산을 위해서 상대습도($P/P_0$) 0.1 ~ 0.3에서 높은 수분 흡-탈착량 차를 보이는 것이 좋다. 메조다공성 실리카(MCM-41)와 다공성 유기-금속 구조체(MIL-101) 의 경우 최대 수분 흡착량은 많지만 상대습도($P/P_0$) 0.1 ~ 0.3 구간에서 각각 $0.027{g_{water}\;g_{ads}}^{-1}$, $0.074{g_{water}\;g_{ads}}^{-1}$의 낮은 수분 흡-탈착량 차를 갖는다. 이 연구에서는 메조다공성 실리카와 다공성 유기-금속 구조체의 표면 성질을 조절하여 상대습도($P/P_0$) 0.1 ~ 0.3에서 수분 흡-탈착량 차를 증가시켰다. 주로 수분 흡착이 상대습도($P/P_0$) 0.5 ~ 0.7에서 일어나는 메조 다공성 실리카의 경우 알루미늄을 관능화 시킨 후에 염기도가 다른 여러 양이온($Na^+$, ${NH_4}^+$, $(C_2H_5)_4N^+$)들로 교환하거나 염($CaCl_2$)을 20 wt% 함침하여 각각의 흡착제들에 대해 $35^{\circ}C$에서 수분 흡착 등온선을 측정하였다. 양이온 교환 후 수분 흡착이 주로 일어나는 구간이 상대습도($P/P_0$) 0.5 부근으로 이동하였으나 여전히 상대습도($P/P_0$) 0.1 ~ 0.3에서 낮은 수분 흡-탈착량 차를 보였다. 하지만 흡습성을 갖는 염($CaCl_2$)을 20 wt% 함침한 메조다공성 실리카는 상대습도($P/P_0$) 0.1 ~ 0.3에서 수분 흡-탈착량 차가 $0.027{g_{water}\;g_{ads}}^{-1}$에서 $0.152{g_{water}\;g_{ads}}^{-1}$으로 증가하였다. 수분 흡착이 상대습도($P/P_0$) 0.3 ~ 0.5에서 주로 일어나는 다공성 유기-금속 구조체에도 염($CaCl_2$)을 20 wt% 함침하였더니 상대습도($P/P_0$) 0.1 ~ 0.3에서 수분 흡-탈착량 차가 $0.330{g_{water}\;g_{ads}}^{-1}$까지 증가하였다.

합천댐 저수지에서의 시공간적 수온모의를 위한 매개변수 민감도 분석 (Parameter Sensitivity Analysis for Spatial and Temporal Temperature Simulation in the Hapcheon Dam Reservoir)

  • 김보람;강부식
    • 한국수자원학회논문집
    • /
    • 제46권12호
    • /
    • pp.1181-1191
    • /
    • 2013
  • 다목적댐 저수지는 여름철에 발생하는 성층현상이 발생하고 가을철에는 성층화된 저수지의밀도 차로 인한 전도현상이 일어나게 된다. 이러한 현상은 저수지의 시공간적 수온분포의 변화에 의하여 발생하며, 이를 정확히 모의하고 예측하기 위해서는 수온에 작용하는 관련 매개변수의 작용특성을 명확히 파악할 필요가 있다. 이에 본 연구에서는 합천댐 저수지를 대상으로 횡방향 평균 2차원 저수지 수리 수질 해석모형인 CE-QUAL-W2를 적용하여 저수지내 발생하는 수온성층, 탁수의 거동 및 수질을 예측하기 위해 선행되어야 할 수온모의를 통해 합천댐 저수지에 적합한 수온 매개변수 산정에 대한 연구를 진행하였다. 특히 모델에서 합천댐 수온모의와 관련된 매개변수 중 바람차폐계수(WSC), 복사열계수(BETA), 빛소멸계수(EXH2O), 바닥 열교환계수(CBHE)의 민감도 분석을 수행하였다. 첫 번째로, 민감도가 높은 기간을 확인한 결과 WSC, BETA, EXH2O는 공통적으로 4~9월, CBHE는 8~11월로 나타났다. 두 번째로, 매개변수가 영향을 미치는 수심대를 확인한 결과 BETA는 0~9m, EXH2O는 8~14m 구간으로, 수표면과 가까운 표층과 수온약층, CBHE는 바닥에서부터 12m 구간으로 심층구간에서 영향이 나타났다. 마지막으로 연단위 혹은 각월에서의 최적매개변수를 적용한 결과 WSC와 CBHE 매개변수는 모의온도의 편차가 그다지 크지 않았으나, BETA와 EXH2O의 경우 연단위와 월단위 최적매개변수 적용 시 모의수온편차가 각각 월평균 $0.20^{\circ}C$$0.51^{\circ}C$로 다소 큰 값을 보이고 있으며, 특히 수온이 최대로 상승하는 5~8월 중에는 $0.4^{\circ}C$$1.09^{\circ}C$의 편차를 보여 월단위 매개변수사용의 필요성이 뚜렷이 확인되었다. 이는 현재 저수지수질모형의 검보정에서 입력요구조건에 따라 혹은 관행적으로 사용되고 있는 연단위 매개변수의 사용에 있어서 월단위로의 개선이 필요한 부분으로 사료된다.

시뮬레이션 모형에 의한 온실의 열환경 분석 (Analysis of Greenhouse Thermal Environment by Model Simulation)

  • 서원명;윤용철
    • 생물환경조절학회지
    • /
    • 제5권2호
    • /
    • pp.215-235
    • /
    • 1996
  • 본 연구에서 수행한 Model 시뮬레이션에 의한 열환경 분석 기법은 지역별로 다양한 기상여건 하에서 대상온실의 난방 및 냉방부하를 보다 합리적으로 예측할 수 있을 뿐만 아니라 냉방이나 난방용 시스템의 결정을 비롯한 난방대책을 수립하고, 에너지 이용 전략의 수립이나 계절적인 작부계획 수립, 온실산업용 적지선정 등에 유익하게 활용될 수 있을 것이라 판단된다. 본 연구에서는 온실의 적극적인 환경조절 유형을 난방과 냉방의 두 가지로 대별하고, 난방 소요열량 산정을 비롯하여 야간의 보온 커튼효과, Heating Degree-Hour 산정 등 난방과 관련된 시뮬레이션은 동적 모형을 이용하여 시간별, 일별 및 월별로 검토하였으며, 환기를 비롯한 차광, 증발냉각시스템의 효과 분석은 정적모형을 이용하여 검토하였다. 특히 하절기 지하수와 같은 저온수를 직접 이용하거나 Heat Pump를 통하여 확보될 수 있는 저온수를 이용하여 온실의 피복면에 살수함으로서 확보할 수 있는 온실냉방효과를 검토하는 데는 1.2m$\times$2.4m 크기의 모형온실을 제작하여 기초실험을 수행함으로서 동절기의 수막시스템의 보온효과와 마찬가지로 하절기 냉방 효과를 거둘 수 있다는 가능성을 확인하였다. 본 연구에 활용된 온실의 수치 환경모형 중 난방관련 시뮬레이션용 동적 수치모형은 소기의 목적을 달성하는데 충분히 응용될 수 있는 이론모형이다. 이 이론모형이 범용성이 높은 것은 온실 내ㆍ외의 미기상 변화, 특히 난방이나 냉방이 본격적으로 요구되는 기간동안에 온도, 습도, 일사, 풍속 등의 미기상 인자들을 면밀하게 관찰하여 실측된 자료를 바탕으로 개발되었고, 다양한 자료에 의해 충분히 검정되었기 때문이다. 본 연구에서는 경남 진주지역의 어느 특정 기간(1987년)의 시간별 기상자료를 중심으로 온실의 열적 환경변화에 대한 수치모형 시뮬레이션을 실시하였으며, 아직 수치모형에 의한 시뮬레이션이 불가능한 일부 냉방효과를 검토하는 데는 모형 실험을 실시하였으며, 그 결과를 요약하면 다음과 같다. 1. 주간과 야간의 설정온도를 달리하고 다단계 변온조절방식으로 시뮬레이션을 행한 결과 난방 소요열량은 난방 설정온도에 따라 현저한 차이를 보였다. 특히 주간 설정온도에 비하여 야간 설정온도가 난방 소요열량에 예민하게 영향을 미치므로 야간의 설정온도 결정에 신중을 기해야 할 것으로 판단된다. 2. 기존의 Heating Degree-Hour 자료는 평균 외기온을 중심으로 임의의 설정온도에 대하여 산정된 값이므로 난방 소요열량에 대한 상대적인 비교수단은 되나 고려되는 기상인자의 제한과 설정온도의 임의성 때문에 실용성이 부족하다. 따라서 본 연구에서 제시된 것처럼 온실 주변의 제반 미기상 인자나 경계조건이 반영됨은 물론 작물의 생육상태 및 구체적인 설정온도까지도 고려하는 동적 수치모형으로 시시각각으로 예측된 실내기온을 중심으로 재배기간 동안의 난방열량을 적산함이 합리적이라 판단된다. 기존의 MDH 자료로 난방 설계를 할 경우에는 지나치게 과잉설계 될 가능성이 있다. 3. 산정된 난방 소요열량은 물론 커튼의 보온성능도 월별 기상여건에 따라 현저한 차이를 보이며, 시뮬레이션에 이용된 커튼의 경우 높은 보온효과를 보임으로서 년 평균 50% 이상의 난방 에너지를 절감할 수 있으며, 동절기 3-4개월의 집중 난방기에 에너지가 크게 절감됨을 발견할 수 있다. 4. 고온기 환기성능은 온실의 구조, 기상조건, 작물의 생육상태 등에 따라 다소의 차이가 있으나 환기율에 의해 크게 좌우되며, 시뮬레이션에 이용된 두 가지 농가보급형 온실 모두 환기율의 증가에 따른 실내기온의 강하 효과가 환기율이 1회/min 정도를 넘어서면서 급격히 둔화되는 현상을 보인다. 이는 기존에 권장되고 있는 적정 환기율인 1회/min 전후의 환기 시스템을 갖추는 것이 합리적임을 확인해 준다. 5. 작물이 성숙된 유리온실에서 외기의 상대습도가 50%인 쾌청한 주간동안 연속적으로 1회/min로 환기를 시킬 경우 실내기온 36.5$^{\circ}C$의 대조구에 비한 온도강하는 50% 차광만 했을 시 2.6$^{\circ}C$이고 효율 80%의 Pad & Fan 시스템만 작동시 6.1$^{\circ}C$ 정도이며, 차광과 냉각시스템을 동시에 작동시는 약 8.6$^{\circ}C$로서 외기온보다 3.3$^{\circ}C$가 낮은 28$^{\circ}C$까지 실내온도를 낮출 수 있으나, 동일 조건하에서 외기의 상대습도가 80%로 높은 경우에는 Pad & Fan시스템에 의한 온도강하가 2.4$^{\circ}C$에 불과하여 50% 차광하에서도 외기온 이하로 실내온도를 낮출 수 없음을 알 수 있다. 6. 하절기 3개월(6/1-8/31)동안 Pad & Fan 시스템의 냉방효과($\Delta$T)는 설정된 작동 온도에 따라 다소 차이를 보일 것으로 예상되나 본 시뮬레이션에서 설정한 시스템의 작동 온도 27$^{\circ}C$에서 상대습도와의 상관관계는 대략 다음과 같았다: $\Delta$T= -0.077RH+7.7 7. 전형적인 하절기 주간기상 하에서 경시적 냉방효과를 분석한 결과 환기만으로는 실내기온을 외기온 보다 5$^{\circ}C$ 높게 유지하는 정도가 고작이고, 차광이나 증발식 냉방시스템 만으로는 작물이 성숙한 단계에서조차도 외기온 이하로 떨어뜨리기가 어려우나 차광과 아울러 증발식 냉방을 병행할 경우에는 작물상태에 따라 다소 차이는 있지만 실내기온을 외기온보다 2.0-2.3$^{\circ}C$ 낮게 유지할 수 있음을 발견할 수 있다. 8. 일사가 차단된 27.5-28.5$^{\circ}C$의 외기온하에서 6.5-8.5$^{\circ}C$의 냉수를 온실 바닥면적 1$m^2$당 1.3 liter/min의 유량으로 온실표면에 살수했을 때 실내기온을 외기온보다 1$0^{\circ}C$ 낮은 16.5-18.$0^{\circ}C$ 정도로 낮출 수 있었다. 앞으로 살수 수온(T$_{w}$ )이나 외기온(T$_{o}$ ) 뿐만아니라 살수율(Q)에 따라 온실기온 (T$_{g}$ )에 미치는 상관 관계 T$_{g}$ = f(T$_{w}$ , Q, T$_{o}$ )를 구명하여 지하수 자체 또는 Heat Pump를 이용한 지하수온 이하의 냉수로 온실냉방의 가능성을 구명하는 것이 앞으로의 과제이다.

  • PDF