• 제목/요약/키워드: Surface hardening treatment

검색결과 171건 처리시간 0.023초

CO2 레이저 표면경화처리된 중탄소 저합금강의 내마모 특성에 미치는 레이저 표면경화 인자의 영향 (Effect of Laser Surface Hardening Factors on the Wear Resistance of Medium Carbon Low Alloy Steel Surface-hardened by Using CO2 Laser Technique)

  • 박근웅;노용식;한유희;이상윤
    • 열처리공학회지
    • /
    • 제5권2호
    • /
    • pp.122-132
    • /
    • 1992
  • This study has been performed to investigate into some effects of the power density and traverse speed of laser beam on the optical microstructure, hardness and wear characteristics of medium carbon low alloy steel treated by laser surface hardening technique. The results obtained from the experiment are summarized as follows : (1) Optical micrograph has shown that finer lath martensite is formed and the amount of undissolved complex carbides increases as the traverse speed increases under the condition of a given power density, whereas the coarsening of lath martensite and the reduction of undissolved complex carbides occur with increasing the power density at a given traverse speed. (2) Hardness measurements have revealed that as the traverse speed increases, hardness values of outermost surface layer more of less decrease under low power densities, but are uniformly distributed under high power densities, also showing that they are uniformly distributed at low traverse speeds and more or less decrease at high traverse speeds with increasing the power density. (3) The effective case depth has been found to decrease from 0.26 mm to 0.17 mm with increasing the traverse speed from 1.5 m/min to 3.0 m/min at a given power density of $25.48{\times}10^3w/cm^2$ and to increase from 0.20 mm to 0.36 mm with increasing the power density from $19.11{\times}10^3w/cm^2$ to $38.22{\times}10^3w/cm^2$ at a given traverse speed of 2.0 m/min. (4) Wear test has exhibited that the amount of weight loss of laser surface hardened specimen with respect to sliding distance at a given load increases with increasing traverse speed at a given power density and decreses with increasing power density at a given traverse speed.

  • PDF

가스 침질탄화처리한 SM3SG강의 기계적 성질에 미치는 고주파퀜칭의 영향 (Effect of Induction Hardening on Mechanical Properties in Gas Nitrocarburized SM35C Steel)

  • 김학신;이규복;유정희;김형태;장환용
    • 열처리공학회지
    • /
    • 제13권4호
    • /
    • pp.224-230
    • /
    • 2000
  • Garbon steel(SM35C) was gas nitrocarburized at $580^{\circ}C$ in $55%N_2-40%NH_3-5%CO_2$ mixed gas atmosphere, and then the steel was induction hardened at $850^{\circ}C$. The microstructure of gas nitrocarburized surface layer was observed by optical microscope and SEM. The phase analysis was carried out by X-ray diffraction method. The mechanical properties of gas nitrocarburized SM35C steel was evaluated by hardness, wear and fatigue test. The thickness of compound and diffusion layer were increased with increasing the gas nitrocarburizing time and the densest compound layer was obtained at 3 hours gas nitrocarburizing time. In case of 15sec induction hardening after gas nitrocarburizing, the surface hardness was decreased from 800Hv to 630Hv owing to the decomposition of compound layer, but wear resistance was increased because of increased hardness of diffusion layer. The fatigue strength of induction hardened steel after gas nitrocarburizing, $58kgf/mm^2$, was higher than $41.5kg/mm^2$ of gas nitrocarburized steel and $45kg/mm^2$ of induction hardened steel, respectively.

  • PDF

북유럽 인양목선의 보존처리-덴마아크 Viking선을 중심으로 (The conservation of the ancient ships salvaged in North Europe-Especially on the Conservation of the Viking ships - Especially on the Conservation of the Viking ships in Denmark)

  • 배병환
    • 보존과학연구
    • /
    • 통권7호
    • /
    • pp.278-291
    • /
    • 1986
  • In this report the practical case of Viking ship's conservation in Denmarke specially among the Eurpoean nations is introduced. The contents of it are summarized as follows :From 1957 to 1962 the Danish National Museum Salvaged five Viking ships from the bottom of Roskilde Fjord, Which were composed of the pieces of timber whose surface was soft because they had lain on the sea bed for about a thousand years. Excavation had been carried out in the same way as in the field by driving down a sheet piling around the wrecks and pumping the water out. These pieces of the wreck ships were packed in airtight plastic bags one by one to be transported for Brede and then immidiately had to go through the treatment for conservation. The conservation treatment process for the pieces includes three steps ; the preliminary process prior to the hardening treatment, the hardening and the assemble of the ships. In the first step ; the preliminary process, all remains of mud and shells from the fjord bed are washed off, and measuring followed ; every single piece of wreckage was drawn so that the form and size of the piece, nail holes, and breaks were registered before conservation. In the second ; the hardening treatment step, the pieces of the woreckage were filled with P.E.G. This Polyethylene Glycol method was the best to handle in the subsequent mounting of the ships in the museum. In the final, the Glycol-treated pieces were pieced together to spips with support of a system of reinforcements. They were to fit in place after corrections of the form were made several times.

  • PDF

냉각공정에 따른 AISI 4140 강의 표면 및 트라이볼로지 특성 (Surface and Tribological Characteristics of Air-cooled and Oil-cooled AISI 4140 Steel)

  • 조학래;이상돈;손정호;정구현
    • Tribology and Lubricants
    • /
    • 제32권5호
    • /
    • pp.160-165
    • /
    • 2016
  • AISI 4140 steel is widely used in various mechanical components owing to its superior mechanical properties. Surface hardening techniques are often used to further improve the properties, particularly for applications with moving components. The aim of this research is to understand the effect of heat treatment process on surface properties and tribological characteristics of AISI 4140 steel. In this work, we prepare two different AISI 4140 steel specimens- one cooled by air and one by oil- and determine surface properties such as surface topography and roughness using a confocal microscope. We also observe the cross-sections of the specimens using a scanning electron microscope to understand the difference in the material structure. In addition, we assess the hardness with respect to the distance from the surface using a micro-Vickers hardness tester. After characterizing the surfaces of the specimens, we investigate the wear characteristics of the specimens under hydrodynamic lubrication. The results show the presence of grooves on the surface of the oil-cooled specimens. It is likely that such grooves are formed during the cooling process using the oil. However, we observe no other significant differences in the surface properties of the specimens. The wear test results show the occurrence of severe wear on the oil-cooled specimens, which may be due to the groove formed on the surface. The results of this work may be helpful to improve surface properties using surface hardening techniques from a tribological perspective.

초음파 나노표면 개질처리를 통한 베어링강의 회전접촉피로 및 잔류응력 특성에 대한 연구 (Rolling Contact Fatigue and Residual Stress Properties of SAE52100 Steel by Ultrasonic Nano-Crystalline Surface Modification (UNSM))

  • 이창순;박인규;조인식;홍정화;지태구;편영식
    • 열처리공학회지
    • /
    • 제21권1호
    • /
    • pp.10-19
    • /
    • 2008
  • To investigate the effect of ultrasonic nano-crystalline surface modification (UNSM) treatment on rolling contact fatigue and residual stress properties of bearing steels, this paper carried out a rolling contact fatigue test, measured residual stress and retained austenite, performed a wear test, observed microstructure, measured micro hardness, and analyzed surface topology. After the UNSM treatment, it was found that the surface became minute by over $100{\mu}m$. The micro surface hardness was changed from Hv730~740 of base material to Hv850~880 with about 20% improvement, and hardening depth was about 1.3 mm. The compressive residual stress was measured as high as -700~-900 MPa, and the quantity of retained austenite was reduced to 27% from 34%. The polymet RCF-6 ball type rolling contact fatigue test showed over 4 times longer fatigue lifetime after the UNSM treatment under 551 kgf load and 8,000 rpm. In addition, this paper observed the samples, which went through the rolling contact fatigue test, with OM and SEM, and it was found that the samples had a spalling phenomenon (the race way is decentralized) after the UNSM treatment. However, before the treatment, the samples had excessive spalling and complete exploration. Comparison of the test samples before and after the UNSM treatment showed a big difference in the fatigue lifetime, which seems to result from the complicated effects of micro particles, compressive residual stress, retained austenite, and surface topology.

Evaluation of Life Span for Al2O3 Nano Tube Formed by Anodizing with Current Density

  • 이승준;김성종
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.148-148
    • /
    • 2017
  • Surface modification is a type of mechanical manipulation skills to achieve extensive aims including corrosion control, exterior appearance, abrasion resistance, electrical insulation and electrical conductivity of substrate materials by generating a protective surface using electrical, physical and chemical treatment on the surface of parts made from metallic materials. Such surface modification includes plating, anodizing, chemical conversion treatment, painting, lining, coating and surface hardening; this study conducted cavitation experiment to assess improvement of durability using anodizing. In order to observe surface characteristics with applied current density, the electrolyte temperature, concentration was maintained at constant condition. To prevent hindrance of stable growth of oxide layer due to local temperature increase during the experiment, stirring was maintained at constant speed. In addition, using galvanostatic method, it was maintained at processing time of 40minutes for 10 to $30mA/cm^2$. The cavitation experiment was carried out with an ultra sonic vibratory apparatus using piezo-electric effect with modified ASTM-G32. The peak-to-peak amplitude was $30{\mu}m$ and the distance between the horn tip and specimen was 1mm. The specimen after the experiment was cleaned in an ultrasonic bath, dried in a vacuum oven for more than 24 hours, and weighed with an electric balance. The surface damage morphology was observed with 3D analysis microscope. As a result of the study, differences were observed surface hardness and anti-cavitation characteristics depending on the development of oxide film with the anodizing process time.

  • PDF

Effects of the Electroplating Duration on the Mechanical Property of the Ni-Co-SiC Composite Coatings

  • Kim, Sung-Min;Lee, Hong-Kee
    • 한국표면공학회지
    • /
    • 제43권6호
    • /
    • pp.255-259
    • /
    • 2010
  • In this work, Ni-Co composites incorporated with nano-sized SiC particles in the range of 45-55 nm are prepared by electroplating. The effects of plating duration on the chemical composition, surface morphology, crystalline structures and hardness have been studied. The maximum hardness of Ni-Co-SiC composite coating is approximately 633 Hv at plating duration of 1 h. The hardness is gradually decreased with increasing plating duration, which can be attributed to the growth of crystalline size and the agglomerates of SiC nano-particles. It is therefore explained that the grain refinement of Ni-Co matrix and stable dispersion of SiC particles play an important role for strengthening, which indicate Hall-Petch relation and Orowan model were dominant for hardening of Ni-Co-SiC composite coatings.

Surface hardening and enhancement of Corrosion Resistance of AISI 310S Austenitic Stainless Steel by Low Temperature Plasma Nitrocarburizing treatment.

  • Lee, Insup
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.175-177
    • /
    • 2012
  • A corrosion resistance and hard nitrocarburized layer was distinctly formed on 310 austenitic stainless steel substrate by DC plasma nitrocarburizing. Basically, 310L austenitic stainless steel has high chromium and nickel content which is applicable for high temperature applications. In this experiment, plasma nitrocarburizing was performed in a D.C. pulsed plasma ion nitriding system at different temperatures in $H_2-N_2-CH_4$ gas mixtures. After the experiment structural phases, micro-hardness and corrosion resistance were investigated by the optical microscopy, X-ray diffraction, scanning electron microscopy, micro-hardness testing and Potentiodynamic polarization tests. The hardness of the samples was measured by using a Vickers micro hardness tester with the load of 100 g. XRD indicated a single expanded austenite phase was formed at all treatment temperatures. Such a nitrogen and carbon supersaturated layer is precipitation free and possesses a high hardness and good corrosion resistance.

  • PDF

표면처리가 장갑재료의 방호한계에 미치는 영향 (An Effect of surface treatment on a Protection Ballistic Limits in armor material)

  • 손세원;김희재;이두성;홍성희;유명재
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.126-134
    • /
    • 2003
  • In order to investigate the effect of surface treatment in Aluminium alloy and Titanium alloy which are used to armor material during ballistic impact, a ballistic testing was conducted. Anodizing was used to achieve higher surface hardness of Aluminium alloy and Iron plating in PVD(Physical Vapor Deposition) method was used to achieve higher surface hardness of Titanium alloy. Surface hardness test were conducted using a Micro victor's hardness tester. Ballistic resistance of these materials was measured by protection ballistic limit(V-50), a statical velocity with 50% probability penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed from the results of V-50 test and Projectile Through Plates (PTP) test at velocities greater than V-50. PTP tests were conducted with 0$^{\circ}$obliquity at room temperature using 5.56mm ball projectile. V-50 tests were conducted with 0$^{\circ}$obliquity at room temperature with projectiles that were able to achieve near or complete penetration during PTP tests. Surface hardness, resistance to penetration. and penetration modes of surface treated alloy laminates are compared to those of surface non-treated alloy laminates. A high speed photography was used to analyze the dynamic perforation phenomena of the test materials.

CO2 레이저를 이용한 Ti-6Al-4V합금의 TiN 및 TiC 가스 합금화 (TiN and TiC Gas Alloying of Ti-6Al-4V Alloy by CO2 Laser)

  • 송기홍;이오연
    • 열처리공학회지
    • /
    • 제9권3호
    • /
    • pp.177-186
    • /
    • 1996
  • Surface alloying of Ti alloy by $CO_2$ laser is able to produce few hundred micrometers thick TiN or TiC surface-alloyed layer with high hardness on the substrate by injecting reaction gas($N_2$ or $CH_4$). Laser surface alloying by means of process control is in many applications essential in order to obtain predictable hardening layer. This research has been investigated the effect of such parameters on TiN and TiC gas alloying of Ti-6Al-4V alloy by $CO_2$ laser. The maximum surface hardness of TiN layer was obtained 1750Hv on the conditions of 0.8kW laser power, 0.8m/min scanning speed and 100% $N_2$ atmosphere. However, the maximum hardness of TiC formation layer after laser treatment was about 630Hv. As scanning speed was increased, the hardness and depth of these layers were decreased at constant laser power.

  • PDF