• Title/Summary/Keyword: Surface grinding

Search Result 766, Processing Time 0.022 seconds

Monitoring of Grinding Wheel Wear in Surface Grinding (평면 연삭에서의 연삭 숫돌 마모 모니터링)

  • 주광훈;김현수;홍성욱;박천홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.613-616
    • /
    • 2000
  • This paper deals with monitoring of grinding wheel wear in surface grinding process. A laser scanning micrometer is used to measure the circumferential shape as well as the axial shape of grinding wheel. The monitoring system is applied to two kinds of grinding methods: plunge and traverse grinding. Through experiments, it is found that measurement of grinding wheel wear reveals information of roughness of ground surface and the adequate dressing time. In addition, monitoring of grinding wheel wear makes it possible to identify abnormal grinding conditions.

  • PDF

A study on the dressing time monitoring method of grinding wheel in surface grinding (연삭가공시 연삭숫돌의 드레싱 시기 검출 방법에 관한 연구)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.112-118
    • /
    • 1998
  • In surface grinding, the contact between the grinding wheel and workpiece introduce heat and resistance, which restrict the self-dressing of the grits and result in burrs and cracks on the workpiece. Therefore, before or during the grinding operation, it is necessary to self-dress the grinding wheel for more accurate performance. In order to determine the dressing time monitoring method of grinding wheel in surface grinding, a three-dimensional computer simulation of the grinding operation has been attempted based on the contact mechanism and surface-shaping system between the grinding wheel and the workpiece. The optimal dressing time is determined based on the grain wear and work surface roughness.

  • PDF

A Study on the Surface Integrity of Grinding of Ceramics

  • Lee, Jongchan;Whan Chio;Woojin Sim;Yongky Kang;Eunha Hwang;Lee, Taewon;Sangbaek Ha;Kim, Sunghun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.90-96
    • /
    • 2001
  • Experimental investigations were carried out to find the characteristics of grinding of ceramics. Grinding mechanisms of ceramics were inspected through the microscopic examination. It has been found that the specific grinding energy of ceramics is relatively low as compared to that of steels. The specific grinding energy affects the surface roughness and the residual stress of ground surface. the experimental results indicate that the rougher surface finish and higher compressive residual stress are obtained at lower specific grinding energy. The surface roughness and the residual stress of the ground surface have significant effects on the strength of ground piece of ceramics.

  • PDF

A Study on the Surface Intigrity of Grinding of Ceramics (세라믹연삭에 있어서 표면품위에 관한 연구)

  • Ha, Sang-Baek;Lim, Jong-Go;Kim, Sung-Huen;Choi, Whan;Lee, Jong-Chan
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.337-342
    • /
    • 2000
  • Experimental investigations were carried out to find the characteristics of grinding of ceramics. Grinding mechanisms of ceramics were inspected through the microscopic examination. It has been found that the specific grinding energy of ceramics is relatively low as compared to that of steels. The specific grinding energy affects the surface roughness and the residual stress of ground surface. The experimental results indicate that the rougher surface finish and higher compressive residual stress are obtained at lower specific grinding energy. The surface roughness and the residual stress of the ground surface have significant effects on the strength of ground piece of ceramics.

  • PDF

A Study on the Grinding of Titanium Alloy Part 1 : Grinding force, Specific grinding energy, Surface roughness, G-ratio (티타늄 합금의 연삭에 관한 연구 Part 1: 연삭력, 비연삭에저니, 표면거칠기 , 연삭비)

  • Kim, S. H.;Lim, J. G.;Ha, S. B.;Choi, H.;lee, J. C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.870-874
    • /
    • 2000
  • This investigation reports the grinding characteristics of titanium alloy(Ti-6Al-4V). Grinding experiments were performed at various grinding conditions and the grinding forces and specific grinding energies were measured to investigate the grindability of titanium alloy with the three different wheels including Diamond, Green carbide and Alumina. To investigate the grinding characteristics of titanium alloy grinding force, force-ratio, specific grinding energy and grinding -ratio, were measured. Surface roughness was also measured with tracer and the ground surfaces were observed with SEM. Force-ratio of grinding of titanium alloy was very lower than that of grinding of SKD-11. Specific grinding energy are almost five times larger and rougher surface was obtained in titanium grinding.

  • PDF

A Study on the Grinding Characteristics of Titanium Alloy (티타늄합금의 연삭특성에 관한 연구)

  • Kim, Sung Hun;Choi, Hwan;Lee, Jong Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.55-62
    • /
    • 2002
  • This investigation reports the grinding characteristics of titanium alloy(Ti-6AI-4V). Grinding experiments were performed at various grinding conditions. The grinding forces were measured to investigate the grindability of titanium alloy with the five different wheels including Green carbide, Alumina, Resin Diamond, Resin CBN and Vitrified CBN. To investigate the grinding characteristics of titanium alloy grinding force, force ratio, specific grinding energy and grinding-ratio were measured. Surface roughness was also measured with tracer and the ground surfaces were observed with SEM Residual stress measurement was conducted on the X-Ray Diffractometer. Force ratio of grinding of titanium alloy was very lower than that of grinding of SKD-11 Surface roughness with Resin Diamond wheel was a little larger and rougher surface than that with other wheels Grinding ratio of titanium alloy was a little lower than that of other materials. Grinding ratio of titanium alloy with Diamond wheel was almost six times larger than that With CBN wheel. As a result of five different wheels, the most excellent wheel in grinding of Titanium alloy was Resin Diamond wheel.

  • PDF

A study on the grinding characteristics of the workpiece using the laminated grinding wheel in the cylindrical grinding process (적층연삭숫돌을 사용한 원통연삭 공정에서 가공특성에 관한 연구)

  • Kim, Kwang-Hee;Lee, Ewn-Jong;Kim, Kang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.165-171
    • /
    • 2000
  • To get smoother ground surface, it is required to replace the grinding wheel with a finer-grit wheel. When the operator replaces the grinding wheel, the balancing and dressing of the wheel surface are necessary. So this replacement has a lot of problems like inconvenience to operators, delays in the operation time, and ineffectiveness in the production process. Therefore, a laminated grinding wheel, which consists of three layers, is provided. The side layers are coarse grits and the middle layer is made up of fine grits. To show the effectiveness of the laminated grinding wheel, experiments on the surface roughness and the material removal rate were performed respectively. As a result, it was found that the grinding process using a laminated grinding wheel can generate smoother ground surface in shorter time.

  • PDF

A Study on the Grinding Characteristics of the Carbon Fiber Epoxy Composite Material Grinding Temperature (탄소섬유 에폭시 복합재료 연삭온도에 의한 연삭특성)

  • 한흥삼;이동주
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.65-70
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites frequently requires cutting or grinding due to the dimensional inaccuracy for precision machine elements. During the composite machining operations such as cutting and grinding, the temperature at the grinding area may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the grinding point during surface grinding of carbon fiber epoxy composite was measured. The grinding temperature and surface roughness were also measured to investigate the surface grinding characteristics of the composites. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed, feed speed, depth of cut and stacking angle. From the experimental investigation, the optimal conditions for the composite surface grinding were suggested.

  • PDF

Temperature Distribution of Tungsten Carbide Alloy Steel(WC-Co) for Surface Grinding (초경합금재의 평명연삭에 의한 온도분포)

  • Nam, Joon Woo;Kim, Won Il;Heo, Seoung Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.178-188
    • /
    • 1995
  • A study on the temperature distribution of tungsten carbide alloy steel(WC-Co) in surface grinding was conducted to improve the surface finish and to find optimum grinding conditions which would lead to efficient grinding operation by theoretical finite element method analysis and experimental test of workpiece under various conditions. Based on the comparixion of test results and FEM analysis data, it is concluded that the FEM computer simulation of heat transfer is useful in predicting the temperature distribution of test material that the increase of temperature is more infuleneced by the grinding depth than the grinding speed. And that the grinding energy flux of dey grinding is 4 to 6 time greater than wet grinding regardless of grinding speed and finally that the heat transfer does not take place in depth deeper than 3mm from the grinding surface.

  • PDF

Relationships between Wheel Velocity and Surface Roughness in the Electrolytic In-Process Dressing(ELID) Grinding (전해드레싱연삭에서 숫돌주속과 표면거칠기의 관계)

  • 차명섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.459-464
    • /
    • 2000
  • In this paper, it verifies the relationships between wheel velocity and surface roughness with the mirror surface grinding using electrolytic in-process dressing (ELID). In the general, as wheel velocity is high, surface roughness is better on the base of grinding theory. However, the relationships between wheel velocity and surface roughness is undefined due to the effect of electro-chemical dressing and the characteristics of materials. According to above relationships, ELID grinding experiment is carried out by following the change of wheel velocity. As the result of this study, it is found that surface roughness is not better as linearly as the increase of wheel velocity, but the limit of wheel velocity exists according to the characteristics of materials. Also, in contradiction to the present trend of high wheel velocity of manufacturing system for high surface integrity, it is able to expected to the base on the development of new ultra precision grinding method with the practicality of mirror surface grinding using ELID grinding method.

  • PDF