• Title/Summary/Keyword: Surface geometry

Search Result 1,285, Processing Time 0.028 seconds

Effect of Sludge Pellets on $NO_x$ REmoval in $BaTiO_3$-sludge Packed-bed Reactor ($BaTiO_3$-슬러지 Packed-bed형 반응기에서 $NO_x$제거에 미치는 슬러지의 영향)

  • 박재윤;송원섭;고희석;박상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.861-867
    • /
    • 2001
  • In this paper, in order to investigate the catalytic effect of the sludge exhausted from waterworks on NO$_{x}$ removal, we measure NO removal characteristics with and without sludge pellets in BaTiO$_3$-sludge packed-bed reactor of plate-plate geometry. NO initial concentration is 50 ppm balanced with air and a gas flow rate is 5ι/min. Gas temperature is changed from 25 to 10$0^{\circ}C$ to investigate the role of sludge pellet on removing active oxygen species and NO$_2$. BaTiO$_3$pellets is filled for coronal discharge at upstream of reactor and sludge pellets is filled for catalytic effect at downstream of reactor. The volume percent of sludge pellets to BaTiO$_3$pellets is changed from 0% to 100% and AC voltage is supplied to the reactor for discharging simulated gases. In the results, when sludge pellets is put at the downstream of plasma reactor, NO removal rate is slightly increased. However, NO$_2$and $O_3$ as by-products during NO removal is significantly decreased from 51ppm without sludge pellets to 5 ppm with sludge pellets and from 50 ppm without sludge pellets to 0.004ppm with sludge pellets, respectively. Therefore, NO$_{x}$(NO+NO$_2$) removal rate is increased up to 93%. It is thought that sludge pellet maybe react with active oxygen species and NO$_2$ generated by corona discharge in surface of BaTiO$_3$pellets, the then NO$_2$O$_3$as by-products are considerably decreased. When we increase gas temperature from room temperature to 10$0^{\circ}C$, NO removal rate is decreased, while NO$_2$ concentration is independent on gas temperature. These result suggest that the removal mechanism of active oxygen species and NO$_2$in sludge pellet is not absorption, but chemical reaction. Therefore we expect that sludge pellets exhausted for waterworks could be used as catalyst for NO$_{x}$ removal with high removal rate and low by-product.oduct.

  • PDF

Development of Digital Image Acquisition System for the Road Safety Survey and Analysis Vehicle (도로안전성 조사분석차량을 위한 영상취득시스템 개발)

  • Jeong, Dong-Hoon;Yoon, Chun-Joo;Sung, Jung-Gon
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.163-171
    • /
    • 2005
  • Current roads were designed and constructed based on the design criteria and thus those were overly simplified drivers' needs. The road criteria do not suggest the desirable range of the design values but suggest the minimum requirements for the road design. Therefore, a completed road design based on the design criteria does not always guarantee the best design in terms of safety and it sometimes violates drivers' expectation. Therefore, the ROSSAV(ROad Safety Survey and Analysis Vehicle) is being developed by the KICT to evaluate road safety and increase driving safety. In this paper, the image capture system was described in detail. The image capture system is consisted of two front view cameras, two side down-looking cameras and a synchronization device. Two front view cameras were used to take a picture of road and road facilities at the driver's viewpoint. Also, two side down-looking cameras were used to capture road surface image to extract lane markings. A synchronization device were used to generate image capturing signal at the fixed distance spacing huck as every 10m. The front view images could be used to calculate and measure highway geometry such as shoulder width because every image is saved with it's locational information. And also the side down looking images could be used to extract median lane mark which representing road alignement efficiently.

  • PDF

Two Dimensional Size Effect on the Compressive Strength of T300/924C Carbon/Epoxy Composite Plates Considering Influence of an Anti-buckling Device (T300/924C 탄소섬유/에폭시 복합재 적층판의 이차원 압축 강도의 크기효과 및 좌굴방지장치의 영향)

  • ;;;C. Soutis
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.88-91
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section (length x width) was investigated on the compressive behavior of a T300/924 [45/-45/0/90]3s, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a 30$\times$30, 50$\times$50, 70$\times$70, and 90mm$\times$90mm gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

  • PDF

Analysis of Load Sharing Ratio of Piled Raft Foundation by Field Measurement (현장 계측을 통한 말뚝지지 전면기초의 하중분담률 분석)

  • Jeong, Sang-Seom;Lee, Jun-Hwan;Park, Jong-Jeon;Roh, Yang-Hoon;Hong, Moon-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.8
    • /
    • pp.41-52
    • /
    • 2017
  • In this study, field measurements were investigated to analyze the load sharing ratio and behavior of piled raft foundation. The field measurements were performed for about 300 days from the start of construction. The geometry of the raft is $3.1m{\times}3.1m$, and the pre-cast and pre-bored pile is 23 m in length and 0.508 m in diameter. Based on the field measurements, the load-settlement relationship of the piled raft foundation was obtained, and the load sharing ratio of the pile was converged to 70% at ultimate loading condition. The load sharing ratio of the pile increased as the settlement increased, and this is because the surface friction of the weathered soil, which is at the lower ground, was significantly increased. Based on the results of the field measurements, load transfer curves were obtained and applied to a numerical analysis by using load transfer method.

Organ Dose Conversion Coefficients Calculated for Korean Pediatric and Adult Voxel Phantoms Exposed to External Photon Fields

  • Lee, Choonsik;Yeom, Yeon Soo;Griffin, Keith;Lee, Choonik;Lee, Ae-Kyoung;Choi, Hyung-do
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.69-75
    • /
    • 2020
  • Background: Dose conversion coefficients (DCCs) have been commonly used to estimate radiation-dose absorption by human organs based on physical measurements of fluence or kerma. The International Commission on Radiological Protection (ICRP) has reported a library of DCCs, but few studies have been conducted on their applicability to non-Caucasian populations. In the present study, we collected a total of 8 Korean pediatric and adult voxel phantoms to calculate the organ DCCs for idealized external photon-irradiation geometries. Materials and Methods: We adopted one pediatric female phantom (ETRI Child), two adult female phantoms (KORWOMAN and HDRK Female), and five adult male phantoms (KORMAN, ETRI Man, KTMAN1, KTMAN2, and HDRK Man). A general-purpose Monte Carlo radiation transport code, MCNPX2.7 (Monte Carlo N-Particle Transport extended version 2.7), was employed to calculate the DCCs for 13 major radiosensitive organs in six irradiation geometries (anteroposterior, posteroanterior, right lateral, left lateral, rotational, and isotropic) and 33 photon energy bins (0.01-20 MeV). Results and Discussion: The DCCs for major radiosensitive organs (e.g., lungs and colon) in anteroposterior geometry agreed reasonably well across the 8 Korean phantoms, whereas those for deep-seated organs (e.g., gonads) varied significantly. The DCCs of the child phantom were greater than those of the adult phantoms. A comparison with the ICRP Publication 116 data showed reasonable agreements with the Korean phantom-based data. The variations in organ DCCs were well explained using the distribution of organ depths from the phantom surface. Conclusion: A library of dose conversion coefficients for major radiosensitive organs in a series of pediatric and adult Korean voxel phantoms was established and compared with the reference data from the ICRP. This comparison showed that our Korean phantom-based data agrees reasonably with the ICRP reference data.

A Study on the Measurements of Sub-surface Residual Stress in the Field of Linear Stress Gradient (선형구배 응력장에서 표층의 잔류응력 측정에 관한 연구)

  • 최병길;전상윤;이택순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1632-1642
    • /
    • 1992
  • When a blind hole of small diameter is drilled in the field of residual stress, strain relieved around the hole is function of magnitude of stress, patterns of stress distribution and hole geometry of diameter and depth. Relieved strain coefficients can be calculated from FEM analysis of relieved strain and actual stress. These relieved strain coefficients make it possible to measure residual stress which vary along the depth in the subsurface of stressed material. In this study, the calibration tests of residual stress measurement are carried out by drilling a hole incrementally on the cantilever or on the tensile test bar. Residual stresses can be determined from measured strains around a shallow hole by application of power series method. For the sake of reliable measurement of residual stress, much efforts should be done to measure relieved strains and hole depth more accurately comparing with conventional procedures of gage subject to the external load. Otherwise linear equations converting strains into stresses may yield erratic residual stresses because of ill-conditions of linear equations. With accurate measurements of relieved strains, residual stress even if varying along the depth can be measured. It is also possible to measure residual stress in the thin film of material by drilling a shallow hole.

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF

Periodic characteristics of long period tidal current by variation of the tide deformation around the Yeomha Waterway (염하수로 인근에서 조석 변형과 장주기 조류성분의 변동 특성)

  • Song, Yong-Sik;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.393-400
    • /
    • 2011
  • The mass transport is very complicated at the area which has the macro tide and complex geometry such as Gyeonggi bay. Especially, the long period current has a strong influence on the estuarine ecosystem and the long-term distribution of substances. The long period current is caused by several external forcing, whose unique characteristic varies spatially and temporally. The variation characteristics of long period current is analysed and its generation mechanism is studied. The tidal nonlinear constituents such as overtide and compound tide are generated due to nonlinear interaction and it causes mean sea level setup. The tidal wave propagating up into estuary is transformed rapidly by decrease of cross-sectional area and depth. Therefore the mean sea level is getting rise toward upriver. The high and low tide level is similar between down-river(Incheon) and up-river(Ganghwa) during neap tide when the tidal deformation is decreased. The tidal phase difference between two tidal stations causes a periodic fluctuation of sea level difference. The low water level of Ganghwa station during spring tide does not descend under EL(-)2.5 m, but the low water level of Incheon fall down under EL(-)4.0 m. The variation of tidal range and its sea level are increased during spring tide. It is found that the long period current $M_{sf}$ is quite similar to that of sea level difference between the two tidal stations. It means that the sea surface inclination caused by the spatial difference of tidal deformation is important forcing for the generation of long period current.

A Sub-grid Scale Estimation of Solar Irradiance in North Korea (북한지역 상세격자 디지털 일사량 분포도 제작)

  • Choi, Mi-Hee;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.41-46
    • /
    • 2011
  • Reliable information on the surface solar radiation is indispensable for rebuilding food production system in the famine plagued North Korea. However, transfer of the related modeling technology of South Korea is not possible simply because raw data such as solar radiation or sunshine duration are not available. The objective of this study is restoring solar radiation data at 27 synoptic stations in North Korea by using satellite remote sensing data. We derived relationships between MODIS radiation estimates and the observed solar radiation at 18 locations in South Korea. The relationships were used to adjust the MODIS based radiation data and to restore solar radiation data at those pixels corresponding to the 27 North Korean synoptic stations. Inverse distance weighted averaging of the restored solar radiation data resulted in gridded surfaces of monthly solar radiation for 4 decadal periods (1983-1990, 1991-2000 and 2001-2010), respectively. For a direct application of these products, we produced solar irradiance estimates for each sub-grid cell with a 30 m spacing based on a sun-slope geometry. These products are expected to assist planning of the North Korean agriculture and, if combined with the already prepared South Korean data, can be used for climate change impact assessment across the whole Peninsula.

GIS-based Urban Flood Inundation Analysis Model Considering Building Effect (건물영향을 고려한 GIS기반 도시침수해석 모형)

  • Lee, Chang-Hee;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.223-236
    • /
    • 2007
  • Recently in urban area flood damages increase due to local concentrated heavy rainfall. Even in the cities where stormwater drainage systems are relatively well established flood damage still occurs because of the capacity limitations of the existing stormwater drainage systems. When the flood exceeds the capacity limitation of the urban storm sewer system, it yields huge property losses of public facilities involving roadway inundation to paralyze industrial and transportation system of the city. To prevent such flood damages in urban area, it is necessary to develop adequate inundation analysis model which can consider complicated geometry of urban area and artificial drainage system simultaneously. The Dual-Drainage model used in this study is the urban inundation analysis model which combines SWMM with DEM based 2-dimensional surface flood inundation model. In this study, the dual drainage model has been modified to consider the effect of complex buildings in urban area. Through the simulation of time variable inundation process, it is possible to identify inundation alert locations as well as to establish emergency action plan for the residencial area vulnerable to flood inundation.