• Title/Summary/Keyword: Surface functional group

Search Result 402, Processing Time 0.027 seconds

Electrical and Luminescent Properties of OLEDs by Nickel Oxide Buffer Layer with Controlled Thickness (NiO 완충층 두께 조절에 의한 OLEDs 전기-광학적 특성)

  • Choi, Gyu-Chae;Chung, Kook-Chae;Kim, Young-Kuk;Cho, Young-Sang;Choi, Chul-Jin;Kim, Yang-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.811-817
    • /
    • 2011
  • In this study, we have investigated the role of a metal oxide hole injection layer (HIL) between an Indium Tin Oxide (ITO) electrode and an organic hole transporting layer (HTL) in organic light emitting diodes (OLEDs). Nickel Oxide films were deposited at different deposition times of 0 to 60 seconds, thus leading to a thickness from 0 to 15 nm on ITO/glass substrates. To study the influence of NiO film thickness on the properties of OLEDs, the relationships between NiO/ITO morphology and surface properties have been studied by UV-visible spectroscopy measurements and AFM microscopy. The dependences of the I-V-L properties on the thickness of the NiO layers were examined. Comparing these with devices without an NiO buffer layer, turn-on voltage and luminance have been obviously improved by using the NiO buffer layer with a thickness smaller than 10 nm in OLEDs. Moreover, the efficiency of the device ITO/NiO (< 5 nm)/NPB/$Alq_3$/ LiF/Al has increased two times at the same operation voltage (8V). Insertion of a thin NiO layer between the ITO and HTL enhances the hole injection, which can increase the device efficiency and decrease the turn-on voltage, while also decreasing the interface roughness.

Selective Removal of Cr (VI) and Cr (III) in Aqueous Solution by Surface Modified Activated Carbon

  • Lee, Jeong-Min;Kim, Min-Il;Lee, Young-Seak
    • Carbon letters
    • /
    • v.9 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • The adsorption and reduction of Cr (VI) to Cr (III) by surface modified activated carbon (AC) in an aqueous solution was studied. The effects of surface modifications on the properties of the carbons were investigated by the analysis of specific surface area, carbon surface pH, acid/base surface values and functional groups. In order to understand the Cr(VI) adsorption and reduction ratio from Cr(VI) to Cr(III), the Cr adsorption capacity of AC was also measured and discussed by using inductively coupled plasma and UV spectrophotometer. The modifications bring about substantial variation in the chemical properties whereas the physical properties such as specific surface area, pore volume and pore size distribution nearly were not changed. Total Cr adsorption efficiency of as-received activated carbon (R-AC) and nitric acid treated activated carbon (N1-AC and N2-AC) were recorded on 98.2, 99.7 and 100%. Cr(III) reduction efficiency of R-AC increased largely from 0.4% to 28.3% compared to N1-AC and N2-AC.

A STUDY ON THE RESPONSES OF OSTEOBLASTS TO VARIOUS SURFACE-TREATED TITANIUM

  • Lee Joung-Min;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.3
    • /
    • pp.307-326
    • /
    • 2004
  • Statement of problem. The long-term success of implants is the development of a stable direct connection between bone and implant surface, which must be structural and functional. To improve a direct implant fixation to the bone, various strategies have been developed focusing on the surface of materials. Among them, altering the surface properties can modify cellular responses such as cell adhesion, cell motility and bone deposition. Purpose. This study was to evaluate the cellular behaviors on the surface-modified titanium by morphological observation, cellular proliferation and differentiation. Material and methods. Specimens were divided into five groups, depending on their surface treatment: electropolishing(EP) anoclizing(AN), machining(MA), blasting with hydroxyapatite particle(RBM) and electrical discharge machining(EDM). Physicochemical properties and microstructures of the specimens were examined and the responses of osteoblast-like cells were investigated. The microtopography of specimens was observed by scanning electron microscopy(SEM). Surface roughness was measured by a three-dimensional roughness measuring system. The microstructure was analyzed by X-ray diffractometer(XRD) and scanning auger electron microscopy(AES). To evaluate cellular responses to modified titanium surfaces, osteoblasts isolated from neonatal rat were cultured. The cellular morphology and total protein amounts of osteoblast-like cell were taken as the marker for cellular proliferation, while the expression of alkaline phosphatase was used as the early differentiation marker for osteoblast. In addition, the type I collagen production was determined to be a reliable indicator of bone matrix synthesis. Results. 1. Each prepared specimen showed specific microtopography at SEM examination. The RBM group had a rough and irregular pattern with reticulated appearance. The EDM-treated surface had evident cracks and was heterogeneous consisting of broad sheet or plate with smooth edges and clusters of small grains, deep pores or craters. 2. Surface roughness values were, from the lowest to the highest, electropolished group, anodized group, machined group, RBM group and EDM group. 3. All groups showed amorphous structures. Especially anodized group was found to have increased surface oxide thickness and EDM group had titaniumcarbide(TiC) structure. 4. Cells on electropolished, anodized and machined surfaces developed flattened cell shape and cells on RBM appeared spherical and EDM showed both. After 14 days, the cells cultured from all groups were formed to be confluent and exhibited multilayer proliferation, often overlapped or stratified. 5. Total protein amounts were formed to be quite similar among all the group at 48 hours. At 14 days, the electropolished group and the anodized group induced more total protein amount than the RBM group(P<.05). 6. There was no significant difference among five groups for alkaline phosphatase(ALP) activity at 48 hours. The AN group showed significantly higher ALP activity than any other groups at 14 days(P<.05). 7. All the groups showed similar collagen synthesis except the EDM group. The amount of collagen on the electropolished and anodized surfaces were higher than that on the EDM surface(P<.05).

SALS Study on Transcrystallization and Fiber Orientation in Glass Fiber/Polypropylene Composites

  • Na, Kun;Park, Han-Soo;Won, Hong-Youn;Lee, Jong-Kwan;Lee, Kwang-Hee;Nam, Joo-Young;Jin, Byung-Suk
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.499-503
    • /
    • 2006
  • This report presents a new technical approach for evaluating the fiber orientation of composites using small-angle light scattering (SALS). Glass fiber (GF)/polypropylene (PP) composites with different fiber orientations were prepared by drawing compression-molded specimens. The drawn samples were remelted and then annealed at $150^{\circ}C$ in order to induce a crystalline structure on the fiber surface, and then underwent SALS analysis. The samples showed a combination of circular and streak patterns. The model calculations demonstrated that the number of nuclei on the fiber surface and the thickness of the transcrystalline layer affected the sharpness and intensity of the streak pattern. In addition, the azimuthal angle of the streak pattern was found to be dependent on the direction of the transcrystalline layer, which correlated with the fiber direction. This correlation suggests that the fiber orientation in the composites can be easily evaluated using SALS.

Study on CR/SAP Water Swellable Composite for Application of Functional Additives to Improve Water Absorption Rate

  • Seo, Eunho;Lim, Sungwook;Kang, Seungwan;Han, Dongbin;Park, Eunyoung
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.314-320
    • /
    • 2020
  • This study focused on experiments with polyethylene glycol (PEG) and glycidyl methacrylate (GMA), which are functional additives for water-expandable rubber. Polychloroprene rubber (CR)/superabsorbent polymer (SAP) composites were prepared and their cure behaviors, mechanical properties, water absorption rates, and surface morphology were measured based on the functional additives applied. When PEG and GMA were applied to the composites, the water absorption rate increased-including the initial rate-compared to that measured when functional additives were not used. The results also show that PEG has a hydrophilic functional group, which allows it to absorb more water, and GMA acts as a coupling agent between CR and SAP. However, with the introduction of functional additives, the cure rate slowed down and the mechanical properties also decreased.

Effects of Low and Moderate Intensity Treadmill Exercise on Functional Recovery and Histological Changes After Spinal Cord Injury in the Rats (척수손상 백서모델에서 저강도 및 중강도 트레드밀 운동이 운동기능회복 및 조직학적 변화에 미치는 영향)

  • Kim, Gi-Do;Kim, Gye-Yeop;Kim, Eun-Jung
    • Physical Therapy Korea
    • /
    • v.16 no.2
    • /
    • pp.41-49
    • /
    • 2009
  • This study was designed to investigate the effects of treadmill exercise of low-intensity and moderate- intensity on the functional recovery and histological change in spinal cord injury (SCI) rats. SCI was induced by the spinal cord impactor dropped after laminectomy. Experimental groups were divided into the Group I (normal control), Group II (non-treatment after SCI induction), Group III (low-intensity treadmill exercise after SCI induction), Group IV (moderate-intensity treadmill exercise after SCI induction). After operation, rats were tested at modified Tarlov scale at 2 days with divided into 4 groups, and motor behavior test (BBB locomotor rating scale, Grid walk test) was examined at 3, 7, 14, and 21 days. For the observation of damage change and size of the organized surface in spinal cord, histopathological studies were performed at 21 days by H & E, and BDNF(brain-derived neutrophic factor) & Trk-b immunohistochemistry studies were performed at 1, 3, 7, 14, 21 days. According to the results, treadmill exercise can play a role in facilitating recovery of locomotion following spinal cord injury. Specially, moderate-intensity treadmill exercise after SCI induction was most improvement in functional recovery and histological change.

  • PDF

Synthesis and Polymerization of Methacryloyl-PEG-Sulfonic Acid as a Functional Macromer for Biocompatible Polymeric Surfaces

  • Kim, Jun-Guk;Sim, Sang-Jun;Kim, Ji-Heung;Kim, Soo-Hyun;Kim, Young-Ha
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.379-383
    • /
    • 2004
  • Poly(ethylene glycol)s (PEGs) are unique in their material properties, such as biocompatibility, non-toxicity, and water-solublizing ability, which are extremely useful for a variety of biomedical applications. In addition, a variety of functional PEGs with specific functionality at one or both chain ends have been synthesized for many specialized applications. Surface modifications using PEG have been demonstrated to decrease protein adsorption and platelet or cell adhesion on biomaterials. Furthermore, PEGs having anionic sulfonate terminal units have been proven to enhance the blood compatibility of materials, which has been demonstrated by the negative cilia concept. The preparation of telechelic PEGs having a sulfonic acid group at one end and a polymerizable methacryloyl group at the other is an interesting undertaking for providing macromers that can be used in various vinyl copolymerization and gel systems. In this paper, preliminary results on the synthesis and polymerization behavior of a novel PEG macromer is described with the aim of identifying a biocompatible material for applications in various blood-contacting devices.

A STUDY ON OSTEOBLAST-LIKE CELL RESPONSES TO SURFACE-MODIFIED TITANIUM

  • Hong Min-Ah;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Su;Lee Jae-Il
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.300-318
    • /
    • 2003
  • Statement of problem: The success of implants depends on intimate and direct contact of implant material on bone tissue and on functional relationship with soft tissue contact. Creation and maintenance of osseointegration depend on the understanding of the tissue's healing, repairing, and remodeling capacity and these capacities rely on cellular behavior. Altering the surface properties can modify cellular responses such as cell adhesion, cell motility, bone deposition, Therefore, various implant surface treatment methods are being developed for the improved bone cell responses. Purpose: The purpose of this study was to evaluate the responses of osteoblast-like cells to surface-modified titanium. Materials and Methods: The experiment was composed of four groups. Group 1 represented the electropolished surface. Group 2 surfaces were machined surface. Group 3 and Group 4 were anodized surfaces. Group 3 had low roughness and Group 4 had high roughness. Physicochemical properties and microstructures of the discs were examined and the responses of osteoblast-like cells to the discs were investigated. The microtopography was observed by SEM. The roughness was measured by three-dimension roughness measuring system. The microstructure was analyzed by XRD, AES. To evaluate cell responses to modified titanium surfaces, osteoblasts isolated from calvaria of neonatal rat were cultured. Cell count, morphology, total protein measurement and alkaline phosphatase activities of the cultures were examined. Results and Conclusion: The results were as follows 1. The four groups showed specific microtopography respectively. Anodized group showed grain structure with micropores. 2. Surface roughness values were, from the lowest to the highest, electropolished group, machined group, low roughness anodized group, and high roughness anodized group. 3. Highly roughened anodized group was found to have increased surface oxide thickness and surface crystallinity. 4. The morphology of cells, flattened or spherical, were different from each other. In the electropolished group and machined group, the cells were almost flattened. In two anodized groups, some cells were spherical and other cells were flattened. And the 14 day culture cells of all of the groups were nearly flattened due to confluency. 5. The number of attached cells was highest in low roughness anodized group. And the machined group had significantly lower cell count than any other groups(P<.05). 6. Total protein contents showed no difference among groups. 7. The level of alkaline phosphatase activities was higher in the anodized groups than electropolished and machined groups(P<.05).

Functional Characterization of the Major Surface Protein of Treponema maltophilum in Human Gingival Fibroblasts

  • Lee, Sung-Hoon;Choi, Bong-Kyu
    • International Journal of Oral Biology
    • /
    • v.30 no.1
    • /
    • pp.31-37
    • /
    • 2005
  • Treponema maltophilum, a Group IV oral spirochete, is associated with periodontitis and endodontic infections. In this study we analyzed the functional role of the major surface protein of this organism (MspA) in human gingival fibroblasts (HGFs). The full-length gene encoding MspA was cloned and expressed in Escherichia coli by using the expression vector pQE-30. The recombinant protein (rMspA) was purified by affinity chromatography with nickel-nitrilotriacetic acid agarose and possible contamination of E. coli endotoxin in rMspA was removed by using polymyxin B-agarose. rMspA significantly induced the expression of pro inflammatory cytokines like IL-6 and IL-8 and intercellular adhesion molecule (ICAM)-1 in HGFs, when analyzed by reverse transcription-PCR, flow cytometry, and enzyme-linked immunosorbent assay. Our results indicate that MspA of T. maltophilum may play an important role in amplifying the local immune response by upregulating the expression of proinflammatory cytokines and ICAM-1.

Synthesis and Properties of Dual Structured Carbon Nanotubes (DSCNTs)

  • Cho, Se-Ho;Kim, Do-Yoon;Heo, Jeong-Ku;Lee, Young-Hee;An, Kay-Hyeok;Kim, Shin-Dong;Lee, Young-Seak
    • Carbon letters
    • /
    • v.7 no.4
    • /
    • pp.277-281
    • /
    • 2006
  • In this study, in order to easily provide functional groups on the surface of carbon nanotubes, dual structural multiwalled carbon nanotubes which have crystalline graphite and turbostratic carbon wall were synthesized by modified vertical thermal decomposition method. Synthesized dual structural MWCNTs were characterized by FE-SEM, TGA, HR-TEM, Raman spectroscopy and BET specific surface area analyzer. The average innermost and outermost diameters of the synthesized nanotubes were around 45 and 75 nm, respectively. The large empty inner space and the presence of graphitic carbons on the surface may open potential applications for gas storage and collection of hazardous materials.

  • PDF