• Title/Summary/Keyword: Surface features

Search Result 1,659, Processing Time 0.031 seconds

Detection of Surface Water Bodies in Daegu Using Various Water Indices and Machine Learning Technique Based on the Landsat-8 Satellite Image (Landsat-8 위성영상 기반 수분지수 및 기계학습을 활용한 대구광역시의 지표수 탐지)

  • CHOUNG, Yun-Jae;KIM, Kyoung-Seop;PARK, In-Sun;CHUNG, Youn-In
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Detection of surface water features including river, wetland, reservoir from the satellite imagery can be utilized for sustainable management and survey of water resources. This research compared the water indices derived from the multispectral bands and the machine learning technique for detecting the surface water features from he Landsat-8 satellite image acquired in Daegu through the following steps. First, the NDWI(Normalized Difference Water Index) image and the MNDWI(Modified Normalized Difference Water Index) image were separately generated using the multispectral bands of the given Landsat-8 satellite image, and the two binary images were generated from these NDWI and MNDWI images, respectively. Then SVM(Support Vector Machine), the widely used machine learning techniques, were employed to generate the land cover image and the binary image was also generated from the generated land cover image. Finally the error matrices were used for measuring the accuracy of the three binary images for detecting the surface water features. The statistical results showed that the binary image generated from the MNDWI image(84%) had the relatively low accuracy than the binary image generated from the NDWI image(94%) and generated by SVM(96%). And some misclassification errors occurred in all three binary images where the land features were misclassified as the surface water features because of the shadow effects.

Luminosity Distribution of Dwarf Elliptical-like Galaxies

  • Seo, Mira;Ann, Hong Bae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.32.2-32.2
    • /
    • 2018
  • We present the structural parameters of ~ 910 dwarf elliptical-like galaxies in the local universe ($z{\lesssim}0.01$) derived from the r-band images of the Sloan Digital SKy Survey (SDSS). We examine the dependence of structural parameters on the morphological types (dS0, dE, dEbc, dSph, and dEblue) and the environment. There is not much difference in the structural parameters among the five subtypes but the mean surface brightness within the effective radius (<${\mu}e$>) of dSph galaxies is clearly different from that of other subtypes. The frequency of disk features such as spiral arm, bar, lens, and rings strongly depends on the morphology of dwarf elliptical-like galaxies with no disk features in dSph galaxies. The absence of disk features and the low surface brightness of dSph galaxies are thought to be closely related to their low mass which leads to different evolution from other subtypes of dwarf elliptical-like galaxies. Density Environments Using IMSNG.

  • PDF

Element Technology of the Ultra-Precision Machine Tools for Machining the Large Surface Micro Features (대면적 미세형상 복합 가공기의 요소기술)

  • Song C.K.;Park C.H.;Hwang J.H.;Kim B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.86-93
    • /
    • 2005
  • In this paper, we discuss the merits of mechanical machining to generate micro features on large surfaces. An overseas technology trend related to the micro machining and dedicated machinery is also presented. We provide an overview of what characteristics the machinery is required to have to generate micro features on large surfaces and what kind of technical barriers need to be overcome to put the technology to practical use.

  • PDF

On the Development of Lofts for Doubly Curved Sheet Metal Components

  • Prasad, K.S.R.K.;Selvaraj, P.;Ayachit, Praveen V.;Nagamani, B.V.
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.199-211
    • /
    • 2006
  • Practical automated flat pattern generation with inbuilt production features for doubly curved sheet metal components (SMCs) is addressed here utilizing a new and unique Point Transformation Algorithm (PTA). This is the third in the series of papers on practical Flat Pattern Development (FPD) [8] and Production Loft Generation Systems (PLGS) [9] complementing the pioneering work [6,7]. In the first two publications, automated loft generation programs have addressed sheet metal components having a Principal Flat Surface (PFS) only. The flat pattern development of 3-D components that do not have the flat surface(termed as Non-PFS components) having complex features of double curvature in addition to cutouts and nibbled holes typical of aircraft components were so far not addressed due to lack of relevant published algorithms. This paper traces the evolution of developments and provides the record of fully illustrated, automated loft generation scheme for aircraft SMCs including the Non-PFS components which underwent validation through production tests by sponsors. Details of some of the unique features of the system like simplified surface model generation, termed as topological model and powerful algorithms deployed with potential for CAD/CAM applications are included.

Morphological Features of Pollen Grains in Portulaca

  • Kim, InSun
    • Applied Microscopy
    • /
    • v.43 no.2
    • /
    • pp.75-80
    • /
    • 2013
  • The morphological features of pollen grains collected from the broad-leaved and cylindrical-leaved Portulaca species of the Hawaiian Islands were investigated. The variation in size and surface pattern were examined using scanning electron microscopy and statistical analysis. Pollens of the Portulaca were apolar grains of monads exhibiting apertures, colpi, and relatively thin echini. Of particular interest was the differing size of pollen grains among the species studied. Pollens of the broad-leaved Portulaca were considerable in size with a length of about $73{\sim}86{\mu}m$, while the cylindrical-leaved Portulaca tended to have smaller pollen grains ranging from 50~65 in diameter. The smallest pollens were found in cultivar 2 having an average of $43{\mu}m$. The pollen was intectate, and the exine surface appeared granulous, having sculptured elements of spinules and puncta. Two types of puncta were discerned; one forming an operculum, and the other, a simple perforation. Numerous spinules and small puncta were found throughout the cylindrical-leaved Portulaca. In the present study, morphological features of pollen grains from ten Hawaiian Portulaca species, including endemic and unknown taxa, revealed the aforementioned pattern of variation. This paper aim to provide morphological information that could be of phylogenetic value within the Hawaiian Portulaca.

Comparison on Safety Features among HTGR's Reactor Cavity Cooling Systems (RCCSs)

  • Kuniyoshi Takamatsu;Shumpei Funatani
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.832-845
    • /
    • 2024
  • Reactor cavity cooling systems (RCCSs) comprising passive safety features use the atmosphere as a coolant, which cannot be lost. However, their drawback is that they are easily affected by atmospheric disturbances. To realize the commercial application of the two types of passive RCCSs, namely RCCSs based on atmospheric radiation and atmospheric natural circulation, their safety must be evaluated, that is, they must be able to remove heat from the reactor pressure vessel (RPV) surface at all times and under any condition other than under normal operating conditions. These include both expected and unexpected natural phenomena and accidents. Moreover, they must be able to eliminate the heat leakage emitted from the RPV surface during normal operation. However, utilizing all of the heat emitted from the RPV surface increases the degree of waste heat utilization. This study aims to understand the characteristics and degree of passive safety features for heat removal by comparing RCCSs based on atmospheric radiation and atmospheric natural circulation under the same conditions. It was concluded that the proposed RCCS based on atmospheric radiation has an advantage in that the temperature of the RPV could be stably maintained against disturbances in the ambient air.

Texturing Effects on High Efficiency Silicon Buried Contact Solar Cell (전극 함몰형 고효율 실리콘 태양전지에서의 texturing 효과)

  • 지일환;조영현;이수홍
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.172-176
    • /
    • 1995
  • Schemes to trap weakly absorbed light into the cell have played an important role in improving the efficiency of both amorphous and crystlline silicon solar cells. One class of scheme relies on randomizing the direction of light within the cell by use of Lambertian(diffuse)surfaces. A second class of scheme relies on the use fo well defined geometrical features to control the direction of light wihin the cell, Widly used geometrical features in crystalline silicon solar cells are the square based pyramids and V-shaped grooves formed in (100) orientated surfaces by intersecting(III) crystallographic planes exposed by anisotropic etching. 18.5% conversion efficiency of Buried Contact Solar Cell with pyramidally textured surface has been achieved. 18.5% efficiency of silicon solar cell is one the highest record in the world The efficieny of cell without textured surface was 16.6%, When adapting textured surface to the Cell, the efficiency has been improved over 12%.

  • PDF