• Title/Summary/Keyword: Surface enrichment

Search Result 203, Processing Time 0.024 seconds

Distributions of Metallic Elements in the Sediment Cores from Several Shellfish-Farming Bays in Korea

  • Hwang, Dong-Woon;Yang, han-Soeb
    • Journal of the korean society of oceanography
    • /
    • v.38 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • We report the distribution of $^{210}$ Pb and various metallic elements (Al, Fe, Mg, Ca, Ti, Mn, Sr, Ba, Zn, V, Cr, Zr, Ni, Cu, and Y) in the sediment cores from six shellfish-farming bays in the South Sea of Korea. The $^{210Pb}$ inventories in Deukryang, Gwangyang, and Goseong Bay cores were comparable to those expected from the known fallout input. However, the $^{210}$ Pb inventories were two times higher in Jinju, Gangjin, and Hansan-Koeje Bay cores, suggesting an important role of other sources such as fluvial inputs. Based on the enrichment factor analyses, non-detrital fractions of all the measured elements were found to be insignificant. The Mn was highly enriched only in the surface sediments of the Jinju and Goseong Bay, which implies that the surface-sediment environment of these bays is efficiently oxidizing Mn remobilized from either pore waters or bottom seawaters. These data set provides the sources of heavy metal in sediment around shellfish farms and the current level of metallic elements for the future monitoring.

Characteristics of Cryolite as an Electrolyte for Reduction of Nd$_2$O$_3$ (네오디뮴 산화물의 전해환원시 전해질로서 빙정석의 특성)

  • 남상욱;백영현
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.2
    • /
    • pp.82-86
    • /
    • 1993
  • An attempt was made to reduce directly Nd2O3 in a cryolited based fluoride bath. Neodymium metal was electrodeposited on the iron cathode to produce the Fe-Nd eutectic alloy in a liquid state at 90$0^{\circ}C$. Graphite was adopted for the anode and pure iron for the cathode. Electrolyte was composed of Na3AlF6 50wt.%. AlF3 34wt.% and Nd2O3 16wt.%. Analysis of typical alloy product showed Al 63.4wt.% Fe 26.9wt.% and Nd 7.0 wt.% The enrichment of neodymium in the alloy couldn't be obtained because aluminum codeposited with ne-odydmium. Experimental results proved that the cryolited based electrolyte was unstable for the electrolysis of rare earth oxides even though their prominent solubilities.

  • PDF

The Measurement of Diffusion Coefficient of Fission Gases in Urania with Respect to O/M Ratio (화학당량에 따른 우라니아의 핵분열 기체 확산 계수 측정)

  • 김희문;박광헌;김봉구;주용선;김건식;송근우;홍권표;강영환
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.1
    • /
    • pp.99-107
    • /
    • 2003
  • The diffusion coefficient of Xe-133 was obtained from an annealing test. The specimens were made from a UO$_2$ single crystal powder with natural enrichment. Weight and grain size were 300mg and ($23\mu\textrm{m}$, respectively. Oxygen potentials were obtained from an oxygen sensor. Released fractions were obtained from both results of gamma scans and quantitative analysis with MCNP code, The annealing test was performed at three temperatures at once. Diffusion coefficients of Xe-133 were calculated using slope of Booth theory in each O/M ratios. Activation energy and the pre-exponential factor of the diffusion coefficient were obtained. The activation energy of near stoichiomeric $UO_2$ is 310 kJ/mol. The measured values of near stoichiometric $UO_2$ are very close to other data available. Diffusion coefficients increase with hyper-stoichiometry, due to higher concentration of cation vacancies.

Characteristics of Zn-Ni Electrodeposition of 60 kgf/$\textrm{mm}^2$ Grade Transformation Induced Plastic Steel Sheets for Automotive Body (60 kgf/$\textrm{mm}^2$급 자동차용 변태유기소성강화강 Zn-Ni 전기도금 특성 연구)

  • Kim D. H.;Kim B. I.;Jeon Y. T.;Jeong Y. S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.263-272
    • /
    • 2004
  • High strength steels such as transformation induced plastic steel, dual phase and solid solution Hardening have been developed and continuously improved due to the intensified needs in the automotive industry. But silicon and manganese in transformation induced plastic steels were known to exhibit harmful effects on galvannealing reaction by oxide film formed during heat treatment. Therefore, in this work, the applicability of Zn-Ni electrodeposition instead of hot dip galvannealed coating to transformation induced plastic steels was evaluated and optimum electroplating condition was investigated. Based on these investigations optimized electroplating conditions were proposed and Zn-Ni electrogalvanized steel sheet was produced by EGL (electrogalvanized line). Its perfomance properties for automotive steel was evaluated.

Effect of Drawing Rate on the Corrosion Behavior of Al Alloy Tubes for Automotive Cooling System (인발률에 따른 자동차 냉각 배관용 Al 합금의 부식 특성에 관한 연구)

  • Park, Byung-Joon;Kim, Jung-Gu;Ahn, Seung-Ho;Kwak, Dong-Ho;Sohn, Hyun-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.489-494
    • /
    • 2008
  • The effect of drawing rate on the electrochemical properties of 3003 Al alloys in 5 wt.% NaCl solution was investigated by electrochemical techniques (potentiodynamic polarization test, potentiostatic polarization test, electrochemical impedance spectroscopy (EIS)) and surface analyses (OM, SEM, EDS). Four kinds of automotive pipe materials were prepared (raw material, drawing rate = 5, 10, 15%). As the drawing rate of Al alloy tube increased, the pitting corrosion resistance increased due to the enrichment of Al oxides on the surface.

The geochemical characteristic and quality assessment of surface sediments in Sihwa Lake (시화호 표층퇴적물의 특성과 오염도 평가)

  • Ju, Jae Sik;Son, Moonho;Cho, Hyeon-Seo;Kim, Pyoung-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.333-338
    • /
    • 2016
  • The purpose of this study was to understand the pollution level of the surface sediment of Sihwa Lake by assessing its geochemical characteristics and investigating the spatial distribution of trace metals and organic matter. In the surface sediment of Sihwa lake, the mean grain size was between 2.94 and 6.35 Ø and the main type of sediment was sandy silt. The concentrations of As, Co, Cr, Ni, V and Li among the metal elements in the surface sediment were correlated with the mean crust concentration (p<0.05). Based on the strong correlation between the metals (Cd, Cu, Pb and Zn) and organic matter (Ignition Loss), the concentrations of these metal elements seem to be controlled by the organic matter dilution effect. The trace metal pollution level, determined by applying the Republic of Korea Marine environmental standard and the US National Oceanic and Atmospheric Administration's sediment quality guidelines, showed the pollution level of As to be either close to or in excess of the above-mentioned standards at almost all levels. The enrichment factor and geoaccumulation index of As showed that there was an incremental increase of pollution by elements other than V, Cr, Co, Fe, Al and Mn. Moreover, the nearby industrial area and dike were more polluted than the other areas, so the surface sediments in Sihwa lake should be monitored by taking into consideration the geological variations.

The Distribution of Heavy Metals in the Surface Waters and Sediments of Gaduk Channel in Jinhae Bay, Korea (진해만의 가덕수도 표층수와 표층 퇴적물 중의 중금속 분포)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Cho, Sung-Rok;Kahng, Sung-Hyun;Kim, Jong-Kun;Park, Jun-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.95-103
    • /
    • 2008
  • Heavy metals in the surface seawaters and sediments were measured in Gaduk channel of jinhae Bay. The high concentrations of heavy metals in the seawaters were found at the stations near the islands. In the seawaters, the mean concentrations of dissolved heavy metals except for Pb were not higher than previous data in this bay. Higher heavy metal contents in the surface sediments were observed at the stations adjacent to the Geojedo or Gadukdo of the Gaduk channel. The contents of Co,Ni,Zn,Cu,As and Cd in the surface sediments showed relatively high correlation coefficients with IL and COD. The order of enrichment factors(EFs) of heavy metals in the sediments on the basis of average shale values was As>Cd>Pb>Zn>Co>Cu>Hg>Ni, and the EFs of As,Cd,Pb and Zn at whole stations were higher than 1. EFs of Ni and Zn on the basis of natural background concentration in Korean coastal sediments were lower than EFs by average shale.

  • PDF

Trace metals in Chun-su Bay sediments (천수만 퇴적물에서 미량금속의 지화학적 특성)

  • Song, Yun-Ho;Choi, Man-Sik;Ahn, Yun-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.169-179
    • /
    • 2011
  • To investigate the controlling factor and accumulation of trace metal concentrations in Chun-su Bay sediments, grain-size, specific surface area, organic carbon content, calcium carbonate content, and concentration of Al, Fe, Na, K, Mg, Ca, Ti, Mn, P, S, Ba, Sr, Li, Co, Cr, Ni, Cu, Zn, As, Cd, Cs, Sc, V, Sn were analyzed. Controlling factors of metals were quartz-dilution, calcium carbonate and coarse sand or K-feldspar. Although the distribution of V, Co, Cr, Ni, Cu, Zn, Sn, and Cd concentration was explained by grain-size effiect, Mn and As showed the similar importance of grain-size effect and coarse sand or K-feldspar factors. By virtue of enrichment factor and 1 M HCl experiment, there were little enrichment in all the trace metals in bay sediments, which were explained well by geochemical properties of sediments. Since the concentration levels of As in coarse sand were high as much as those in fine-grained sediments and it was combined with Mn oxide (1 M HCl leached) and K-feldspar (residual), it was suggested that when the enrichment of As in sediments would be assessed, it is necessary to separate the coarse sand from bulk sediments or to use only sediments with higher than 10% in < $16{\mu}m$ fraction.

Trace Metals in Surface Sediments of Garolim Bay, Korea (가로림만 표층 퇴적물 내 미량금속 분포 특성)

  • PARK, KYOUNGKYU;CHOI, MANSIK;JOE, DONGJIN;JANG, DONGJUN;PARK, SOJUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.2
    • /
    • pp.9-25
    • /
    • 2020
  • In 2010 and 2015, total 77 surface sediment samples were collected to assess the anthropogenic effects of trace metals in surface sediments of Garolim Bay, and the physical characteristics (particle size and specific surface area) and geochemical components (major (Al, Ca, Fe, K, Ba) and trace metals (Mn, Cs, Cr, Co, Ni, Cu, Zn, Pb), organic carbon and calcium carbonate) were analyzed. Mean grain size of Garolim Bay surface sediments ranged from 0.51-5.58 Ø (mean 3.98 Ø) and increased from the inlet of bay to the inner bay, and from the waterway to the land. Most of the metal concentrations except for some elements showed the similar distribution to those of mean grain size and specific surface area. As the particle size decreased and the specific surface area increased, the metal concentration increased. In order to estimate the factors controlling the concentration of trace metals, factor analysis was performed, and three factors were extracted (92.7% of the total variation). Factor 1 accounted for 71.3% of the total variation, which was a grain size factor. Factor 2 accounted for 14.2% of the total variation, Factor 3 accounted for 7.2% of the total variance. Enrichment factor was calculated using the particle size corrected background concentration. Metals with a enrichment factor of 1.5 or higher and the number of samples were 4 for Cr (St. 1, 16, 27, 39) and 1 for Pb (St. 39), but there were little differences in the concentrations of 1M HCl leached metals for these metals. The percentage of 1M HCl leached fraction to total metal concentration decreased in the order of Pb~Co>Cu>Zn~Mn>Ni>Cr. Comparing this value with contaminated and clean sediments in other coastal areas, the percentages for each metal were similar regardless of the trace metal levels in all regions. This fact might be resulted from the reaction between the 1M HCl solution and the different sediment constituents, indicating that there is a limit to apply this percentage of leached metal to the estimation of the contamination extent.

Change of Heavy Metals in the Surface Sediments of the Lake Shihwa and Its Tributaries (시화호 및 주변 하천 표층 퇴적물의 중금속 분포 변화)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Cho, Sung-Rok;Park, Jun-Kun;Park, Chung-Kil
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.447-457
    • /
    • 2003
  • In order to understand the distribution of changes of geochemical characteristics in surface sediments according to various environmental changes around the artificial Lake Shihwa, surface sediments were sampled at $13{\sim}15$ sites form 1997 to 1999 and analyzed by C/S analyzer, ICP/MS and AAS. The average $S/C_{org}$ ratio was 0.35 in the surface sediments, which is similar to 0.36, the characteristic ratio of marine sediments. Heavy metal contents and enrichment factors in the surface sediments tended to be decreasing from the head to the mouth of the Lake Shihwa. With the deposition of fine-grained sediments in the central part of lake, anoxic water column induced the sulfides compounds with Cu, Cd and Zn. Metals such as Al, Fe, Cr, Co, Ni, Cu, Zn and Cd except for Mn and Pb showed relatively high correlation coefficients among them. The contents of Cr, Co, Ni, Cu, Zn and Cd in the surface sediments of the lake were two to five times higher than those in the lake before dike construction and also in outer part of the dike. These are mainly due to the Input of untreated industrial and municipal waste-waters into the lake, and the accumulation of heavy metals by limitation of physical mixing. Although metal contents of the surface sediments at the sites near the water-gate due to outer seawater inflow tended to be lower than those during the desalination, heavy metals were deposited in areas around the new industrial complex in the evidence of spatial distribution of heavy metals in the sediments. This is mainly due to the input of untreated waste-waters from tributaries.