• Title/Summary/Keyword: Surface engineering

Search Result 34,445, Processing Time 0.07 seconds

Feasibility of icephobicity induced by self-propelling condensed water droplets

  • Lee, Hyung-Seok;Lee, Kyu Hwan;Park, Hyun Sun;Claessond, Per M.;Yun, Sang H.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.199-200
    • /
    • 2015
  • 실리콘 기판위에 Gecko의 피부를 모사한 다층의 나노, 마이크로 구조표면에서 일어나는 응결된 water vapor droplets의 coalescence에 기인하는 surface energy의 kinetic energy의 변환을 통하여 발생하는 water droplets의 self-propelling을 이용한 빙점하에서 dynamic wetting 성질의 관찰을 통해서 얼음 방지, 지연, 또는 얼음 부착성 최소화 표면의 구현 가능성을 보여준다.

  • PDF

Surface elasticity and residual stress effect on the elastic field of a nanoscale elastic layer

  • Intarit, P.;Senjuntichai, T.;Rungamornrat, J.;Rajapakse, R.K.N.D.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.85-105
    • /
    • 2011
  • The influence of surface elasticity and surface residual stress on the elastic field of an isotropic nanoscale elastic layer of finite thickness bonded to a rigid material base is considered by employing the Gurtin-Murdoch continuum theory of elastic material surfaces. The fundamental solutions corresponding to buried vertical and horizontal line loads are obtained by using Fourier integral transform techniques. Selected numerical results are presented for the cases of a finite elastic layer and a semi-infinite elastic medium to portray the influence of surface elasticity and residual surface stress on the bulk stress field. It is found that the bulk stress field depends significantly on both surface elastic constants and residual surface stress. The consideration of out-of-plane terms of the surface stress yields significantly different solutions compared to previous studies. The solutions presented in this study can be used to examine a variety of practical problems involving nanoscale/soft material systems and to develop boundary integral equations methods for such systems.

Surface Modification of Aluminum by Nitrogen-Ion Implantation

  • Kang Hyuk-Jin;Ahn Sung-Hoon;Lee Jae-Sang;Lee Jae-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 2006
  • The research on surface modification technology has been advanced to improve the properties of engineering materials. Ion implantation is a novel surface modification technology that enhances the mechanical, chemical and electrical properties of substrate's surface using accelerated ions. In this research, nitrogen ions were implanted into AC7A aluminum substrates which would be used as molds for rubber molding. The composition of nitrogenion implanted aluminum and distribution of nitrogen ions were analyzed by Auger Electron Spectroscopy (AES). To analyze the modified surface, properties such as hardness, friction coefficient, wear resistance, contact angle, and surface roughness were measured. Hardness of ion implanted specimen was higher than that of untreated specimen. Friction coefficient was reduced, and wear resistance was improved. From the experimental results, it can be expected that implantation of nitrogen ions enhances the mechanical properties of aluminum mold.

Microsturctures of copper thin films sputtered onto polyimide (폴리이미드 위에 스퍼터 증착된 구리 박막의 미세구조)

  • Chung, Tae-Gyeong;Kim, Young-Ho;Yu, Jin
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.2
    • /
    • pp.90-96
    • /
    • 1992
  • Thed effects of sputter gas pressure and substrate surface micro-roughness on the microstructure and surface topography have been investigated in the Cu thin films sputter deposited onto polyimide substrates. The surface roughness of polyimide was controlled by oxygen rf plasma treatment. In the Cu film deposited at the pressure of 5 mtorr, the surface is smooth and the columnar structure is not visible regardless of polyimide surface more open boundaries. The polyimide surface roughness enhances these effects, These phenomena can be explained in therm of atomic shadowing effect.

  • PDF

A Study on the Surface Integrity of Grinding of Ceramics

  • Lee, Jongchan;Whan Chio;Woojin Sim;Yongky Kang;Eunha Hwang;Lee, Taewon;Sangbaek Ha;Kim, Sunghun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.90-96
    • /
    • 2001
  • Experimental investigations were carried out to find the characteristics of grinding of ceramics. Grinding mechanisms of ceramics were inspected through the microscopic examination. It has been found that the specific grinding energy of ceramics is relatively low as compared to that of steels. The specific grinding energy affects the surface roughness and the residual stress of ground surface. the experimental results indicate that the rougher surface finish and higher compressive residual stress are obtained at lower specific grinding energy. The surface roughness and the residual stress of the ground surface have significant effects on the strength of ground piece of ceramics.

  • PDF

Surface effects on vibration and buckling behavior of embedded nanoarches

  • Ebrahimi, Farzad;Daman, Mohsen;Fardshad, Ramin Ebrahimi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The present paper deals with the free vibration and buckling problem with consideration of surface properties of circular nanobeams and nanoarches. The Gurtin-Murdach theory is used for investigating the surface effects parameters including surface tension, surface density and surface elasticity. Both linear and nonlinear elastic foundation effect are considered on the circular curved nanobeam. The analytically Navier solution is employed to solve the governing equations. It is obviously detected that the natural frequencies of a curved nanobeams is substantially influenced by the elastic foundations. Besides, it is revealed that by increasing the thickness of curved nanobeam, the influence of surface properties and elastic foundations reduce to vanished, and the natural frequency and critical buckling load turns into to the corresponding classical values.

Low reflectance of sub-texturing for monocrystalline Si solar cell

  • Chang, Hyo-Sik;Jung, Hyun-Chul;Kim, Hyoung-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.249-249
    • /
    • 2010
  • We investigated novel surface treatment and its impact on silicon photovoltaic cells. Using 2-step etching methods, we have changed the nanostructure on pyramid surface so that less light is reflected. This work proposes an improved texturing technique of mono crystalline silicon surface for solar cells with sub-nanotexturing process. The nanotextured silicon surface exhibits a lower average reflectivity (~4%) in the wavelength range of 300-1100nm without antireflection coating layer. It is worth mentioning that the surface of pyramids may also affect the surface reflectance and carrier lifetime. In one word, we believe nanotextruing is a promising guide for texturization of monocrystalline silicon surface.

  • PDF