• Title/Summary/Keyword: Surface electric field

Search Result 661, Processing Time 0.027 seconds

Vibration analysis of boron nitride nanotubes by considering electric field and surface effect

  • Zeighampour, Hamid;Beni, YaghoubTadi
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.607-620
    • /
    • 2021
  • In this paper, the vibrations of boron nitride nanotubes (BNNTs) are investigated by considering the electric field. To consider the size effect at nanoscale dimensions, the surface elasticity theory is exploited. The equations of motion of the BNNTs are obtained by applying Hamilton's principle, and the clamped-guided boundary conditions are also considered. The governing equations and boundary conditions are discretized using the differential quadrature method (DQM), and the natural frequency is obtained by using the eigenvalue problem solution. The results are compared with the molecular dynamic simulation in order to validate the accurate values of the surface effects. In the molecular dynamics (MD) simulation, the potential between boron and nitride atoms is considered as the Tersoff type. The Timoshenko beam model is adopted to model BNNT. The vibrations of two types of zigzag and armchair BNNTs are considered. In the result section, the effects of chirality, surface elasticity modulus, surface residual tension, surface density, electric field, length, and thickness of BNNT on natural frequency are investigated. According to the results, it should be noted that, as an efficient non-classical continuum mechanic approach, the surface elasticity theory can be used in scrutinizing the dynamic behavior of BNNTs.

The Study of Factors that Influence the Surface Electric Field of High Voltage Planar PN Junctions (고전압 평면형 pn집합의 표면전계에 영향을 미치는 요인에 관한 고찰)

  • Park, Yearn-Ik
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.490-497
    • /
    • 1986
  • The effectiveness of field plate and window tapering in reducing the maximum surface electric field of planar pn junctions has been studied by two dimensional computer simulation. The influence of silicon dioxide insulator thickness is also presented.

  • PDF

Influence of Applied Electric Field on Low Temperature Degradation of Y-TZP (인가 전압이 Y-TZP의 저온열화에 미치는 영향)

  • 장주웅;이홍림;김대준;오남식;이득용
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1254-1260
    • /
    • 1997
  • Influence of applied electric field on the low temperature degradation of 3 mol% YaO3 stabilized tetragonal zirconia polycrystals(3Y-TZP) was investigated using X-ray diffractometry of specimens aged under the dc field of 1.1 kV/mm in silicone oil both of 12$0^{\circ}C$-21$0^{\circ}C$. After the aging, the tetragonal to monoclinic phase transformation was observed only on the specimen surface of 3Y-TZP faced to the anode. This indicated that the surface was overcrowded with oxygen ions as a result of diffusion of oxygen vacancies toward the cathode-sided surface. To elucidate an influence of the applying time of the electric field on the extent of the degradation of 3Y-TZP in air, specimens were aged fore 0-2 hours under the electric field in the oil bath of 12$0^{\circ}C$ and then subsequently aged for 3h at 22$0^{\circ}C$ in air. The longer the specimens were aged under the field, the more extensive the transformation to the monoclinic phase was on the specimen surface faced to the cathode, probably originated from a high diffusion rate of oxygen ions due to a steep oxygen vacancy concentration gradient.

  • PDF

Electrohydrodynamic Analysis of Dielectric Guide Flow Due to Surface Charge Density Effects in Breakdown Region

  • Lee, Ho-Young;Kang, In Man;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.647-652
    • /
    • 2015
  • A fully coupled finite element analysis (FEA) technique was developed for analyzing the discharge phenomena and dielectric liquid flow while considering surface charge density effects in dielectric flow guidance. In addition, the simulated speed of surface charge propagation was compared and verified with the experimental results shown in the literature. Recently, electrohydrodynamics (EHD) techniques have been widely applied to enhance the cooling performance of electromagnetic systems by utilizing gaseous or liquid media. The main advantage of EHD techniques is the non-contact and low-noise nature of smart control using an electric field. In some cases, flow can be achieved using only a main electric field source. The driving sources in EHD flow are ionization in the breakdown region and ionic dissociation in the sub-breakdown region. Dielectric guidance can be used to enhance the speed of discharge propagation and fluidic flow along the direction of the electric field. To analyze this EHD phenomenon, in this study, the fully coupled FEA was composed of Poisson's equation for an electric field, charge continuity equations in the form of the Nernst-Planck equation for ions, and the Navier-Stokes equation for an incompressible fluidic flow. To develop a generalized numerical technique for various EHD phenomena that considers fluidic flow effects including dielectric flow guidance, we examined the surface charge accumulation on a dielectric surface and ionization, dissociation, and recombination effects.

Analysis on Electric Field Based on Three Dimensional Atmospheric Electric Field Apparatus

  • Xing, Hong-yan;He, Gui-xian;Ji, Xin-yuan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1697-1704
    • /
    • 2018
  • As a key component of lighting location system (LLS) for lightning warning, the atmospheric electric field measuring is required to have high accuracy. The Conventional methods of the existent electric field measurement meter can only detect the vertical component of the atmospheric electric field, which cannot acquire the realistic electric field in the thunderstorm. This paper proposed a three dimensional (3D) electric field system for atmospheric electric field measurement, which is capable of three orthogonal directions in X, Y, Z, measuring. By analyzing the relationship between the electric field and the relative permittivity of ground surface, the permittivity is calculated, and an efficiency 3D measurement model is derived. On this basis, a three-dimensional electric field sensor and a permittivity sensor are adopted to detect the spatial electric field. Moreover, the elevation and azimuth of the detected target are calculated, which reveal the location information of the target. Experimental results show that the proposed 3D electric field meter has satisfactory sensitivity to the three components of electric field. Additionally, several observation results in the fair and thunderstorm weather have been presented.

Analysis of Electric Fields Inside GIS with a Small Void in Spacer or with a Metal Impurity (고체 절연체 내부 공극 또는 금속 이물질 존재시의 GIS 내부의 전계 해석)

  • Min, Seok-Won;Kim, Yong-Jun;Kim, Eung-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.6
    • /
    • pp.346-353
    • /
    • 2000
  • In this paper, we developed 3 dimensional Surface Charge Method which could calculate electric fields inside GIS with a small void in solid insulator or with a metal impurity. We find a metal impurity makes much more non-uniform electric field distribution inside GIS than a small void. We also find electric field is much more increased when a metal impurity is close to solid insulator surface at high voltage conductor.

  • PDF

The Characteristics of SMD Inductor Core (SMD Inductor Core의 전기적 특성)

  • Oh, Yong-Chul;Kim, Jin-Sa;Lee, Dong-Gyu;Shin, Chul-Ki;Kim, Ki-Joon;Lee, Chul-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.85-88
    • /
    • 2005
  • In this study, it analysis electric field of SMD(Surface Mounted Device) Inductor Core and it get electric field only exist inside of SMD core. Therefore electric fields do not affect any device and equipments. These results are very important to design data acquisition system(several test equipments such as temperature, impedance, and current test), because data acquisition system can place under the SND Inductor core. So, it can be decrease their test error due to electric field.

  • PDF

Effect of Nozzle Material on Drop Size Distribution in Electrohydrodynamic Spraying (전기수력학적 분무에서 노즐재질이 입경분포에 미치는 영향)

  • 김명찬;이상용
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1451-1457
    • /
    • 2002
  • When an aqueous liquid such as water having high electric conductivity and high surface tension is discharged from a nozzle under a strong DC electric field, fine drops ranging from 30 to 450 microns can be obtained only through the spindle mode. In the present study, effects of the electric conductivity and the surface wettability of nozzle materials on formation of drops with this mode were investigated. For that, three nozzles with the same size but with different materials were prepared and tested; a stainless steel needle, and a plain and a metal (gold)-coated (except for the tip portion) silica needles. Uniform drops were obtained with the gold-coated silica nozzle over the wider range of the DC voltage input. That is, formation of the liquid cone and detachment of the liquid spindle (ligament) can be more stabilized and frequent with the needles having high electric conductivity but with low surface wettability at their tips.

Determination of Surface Currents on Circular Microstrip Antennas

  • Godaymi, Wa'il A.;Mohammed, Abdul-Kareem Abd Ali;Ahmed, Zeki A.
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.260-270
    • /
    • 2012
  • This work aims to present a theoretical analysis of the electric and magnetic surface current densities of a circular microstrip antenna (CMSA) as a body of revolution. The rigorous analysis of these problems begins with the application of the equivalence principle, which introduces an unknown electric current density on the conducting surface and both unknown equivalent electric and magnetic surface current densities on the dielectric surface. These current densities satisfy the integral equations (IEs) obtained by canceling the tangential components of the electric field on the conducting surface and enforcing the continuity of the tangential components of the fields across the dielectric surface. The formulation of the radiation problems is based on the combined field integral equation. This formulation is coupled with the method of moments (MoMs) as a numerical solution for this equation. The numerical results of the electric and magnetic surface current densities on the outside boundary of a CMSA excited by $TM_{11^-}$ and $TM_{21^-}$ modes are presented. The radiation pattern is calculated numerically in the two principle planes for a CMSA and gives a good results compared with measured results published by other research workers.

Surface-Plasmon Assisted Transmission Through an Ultrasmall Nanohole of ~ 10 nm with a Bull's Eye Groove

  • Kim, Geon Woo;Ko, Jae-Hyeon;Park, Doo Jae;Choi, Seong Soo;Kim, Hyuntae;Choi, Soo Bong
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1698-1702
    • /
    • 2018
  • We simulate the light transmission through an extremely small nanoscale aperture having a 10 nm diameter punctured in a metal film positioned at the center of a plasmonic bull's eye grating. A considerable directive emission of transmitted light with a divergence angle of 5.7 degrees was observed at $10{\mu}m$ from the nanohole opening at the frequency of surface plasmon polariton excitation, an confirmed by measuring the distance dependent transmission amplitude. Observations of the electric field in cross-sectional, near-field, and far-field views near-field enhancement associated with the surface plasmon excitation, and the interference of the electric field light through the nanohole in the near-field region is responsible for such a considerable directive emission.