• Title/Summary/Keyword: Surface drone

Search Result 92, Processing Time 0.017 seconds

The Precise Three Dimensional Phenomenon Modeling of the Cultural Heritage based on UAS Imagery (UAS 영상기반 문화유산물의 정밀 3차원 현상 모델링)

  • Lee, Yong-Chang;Kang, Joon-Oh
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.1
    • /
    • pp.85-101
    • /
    • 2019
  • Recently, thank to the popularization of light-weight drone through the significant developments in computer technologies as well as the advanced automated procedures in photogrammetry, Unmanned Aircraft Systems have led to a growing interest in industry as a whole. Documentation, maintenance, and restoration projects of large scaled cultural property would required accurate 3D phenomenon modeling and efficient visual inspection methods. The object of this study verify on the accuracies achieved of 3D phenomenon reconstruction as well as on the validity of the preservation, maintenance and restoration of large scaled cultural property by UAS photogrammetry. The test object is cltural heritage(treasure 1324) that is the rock-carved standing Bodhisattva in Soraesan Mountain, Siheung, documented in Goryeo Period(918-1392). This standing Bodhisattva has of particular interests since it's size is largest stone Buddha carved in a rock wall and is wearing a lotus shaped crown that is decorated with arabesque patterns. The positioning accuracy of UAS photogrammetry were compared with non-target total station survey results on the check points after creating 3D phenomenal models in real world coordinates system from photos, and also the quantified informations documented by Culture Heritage Administration were compared with UAS on the bodhisattva image of thin lines. Especially, tests the validity of UAS photogrammetry as a alternative method of visual inspection methods. In particular, we examined the effectiveness of the two techniques as well as the relative fluctuation of rock surface for about 2 years through superposition analysis of 3D points cloud models produced by both UAS image analysis and ground laser scanning techniques. Comparison studies and experimental results prove the accuracy and efficient of UAS photogrammetry in 3D phenomenon modeling, maintenance and restoration for various large-sized Cultural Heritage.

Characteristics of Beach Change and Sediment Transport by Field Survey in Sinji-Myeongsasimni Beach (신지명사십리 해수욕장에서 현장조사에 의한 해빈변화와 퇴적물이동 특성)

  • Jeong, Seung Myong;Park, Il Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.594-604
    • /
    • 2021
  • To evaluate the causes of beach erosion in Sinji-Myeongsasimni Beach, external forces, such as tides, tidal currents, and waves, were observed seasonally from March 2019 to March 2020, and the surface sediments were analyzed for this period. In addition, the shoreline positions and beach elevations were regularly surveyed with a VRS GPS and fixed-wing drone. From these field data, the speed of the tidal currents was noted to be insufficient, but the waves were observed to af ect the deformation of the beach. As the beach is open to the southern direction, waves of heights over 1 m were received in the S-SE direction during the spring, summer, and fall seasons. Large waves with heights over 2 m were observed during typhoons in summer and fall. Because of the absence of typhoons for the previous two years from July 2018, the beach area over datum level (DL) as of July 2018 was greater by 30,138m2 compared with that of March 2019, and the beach area as of March 2020 decreased by 61,210m2 compared with that of March 2019 because of four typhoon attacks after July 2018. The beach volume as of March 2019 decreased by 5.4% compared with that of July 2018 owing to two typhoons, and the beach volume as of September 2019 decreased by 7.3% because of two typhoons during the observation year. However, the volume recovered slightly by about 3% during fall and winter, when there were no high waves. According to the sediment transport vectors by GSTA, the sediments were weakly influxed from small streams located at the center of the beach; the movement vectors were not noticeable at the west beach site, but the westward sediment transport under the water and seaward vectors from the foreshore beach were prominently observed at the east beach site. These patterns of westward sediment vectors could be explained by the angle between the annual mean incident wave direction and beach opening direction. This angle was inclined 24° counterclockwise with the west-east direction. Therefore, the westward wave-induced currents developed strongly during the large-wave seasons. Hence, the sand content is high in the west-side beach but the east-side beach has been eroded seriously, where the pebbles are exposed and sand dune has decreased because of the lack of sand sources except for the soiled dunes. Therefore, it is proposed that efforts for creating new sediment sources, such as beach nourishment and reducing wave heights via submerged breakwaters, be undertaken for the eastside of the beach.