• Title/Summary/Keyword: Surface drifter

Search Result 28, Processing Time 0.034 seconds

Observation of the Sea Surface Skin Current Using a GPS-Drifter (GPS 뜰개를 이용한 해양 표면류 관측)

  • Park, Joon Seong;Kang, KiRyong;Lee, Seok;Lee, Sang-Ryong
    • Ocean and Polar Research
    • /
    • v.35 no.3
    • /
    • pp.193-203
    • /
    • 2013
  • A GPS-drifter was newly designed to observe the sea surface skin current and to estimate the direct wind effect on the sea surface. After conducting a test to establish and verify the accuracy of the GPS itself in the laboratory, in-situ experimental campaigns at Saemangeum in Gunsan city and Haeundae in Busan city, Korea, were carried out to ascertain the drifter track and to estimate the velocity data set on Oct. 3, 15, 23, 27 and Nov. 25, 2011. The current meters, RCM9 and ADCP, were moored together to remove the background current field, and the wind data were obtained from several marine stations such as towers and buoys in these areas. The drifter-observed velocity show good agreement with the flow obtained by the HF radar in the Saemangeum area. The direction of the wind-driven current extracted from the drifter-observed velocity was completely deflected to the right, however the degree of the angle was different according to the drift types. The average speed of the wind-driven current matched with 2.19~2.81% of the wind speed and the deflection angle was about $8.0{\sim}10.9^{\circ}$ without adjustment for the land-sea effect, and about 2.19~2.84% and $4.1{\sim}6.0^{\circ}$ with the adjustment for the land-sea effect.

A Study on Comparison of Satellite-Tracked Drifter Temperature with Satellite-Derived Sea Surface Temperature of NOAA/NESDIS

  • Park, Kyung-Ae;Chung, Joug-Yul;Kim, Kuh;Choi, Byung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.83-107
    • /
    • 1994
  • Sea surface temperatures (SSTs) estimated by using the operational SST derivation equations of NOAA/NESDIS were compared with satellite-tracked drifter temperatures. As a result of eliminating cloud-filled or contaminated pixels through several cloud tests, 69 matchup points between the drifter temperatures and the SSTs estimated with NOAA satellite 9, 10. 11 and 12 data from August, 1993 to July, 1994 were collected. Multi-channel sea surface temperature(MCSST) using a split window technique showed an approximately $1.0{\circ}C$ rms error as compared with the drifting buoy temperatures for 69 coincidences. Accuracies for satellete-derived sea surface temperatures were evaluated for only NOAA-11 AVHRR data which had relatively large matchups of 35points as compared with other satellites. For the comparison of the oberved temperatures with the calculated SSTs, linear MCSST and nonlinear cross product sea surface temperature(CPSST) algorithms by the split, the dual and the triple window technique were used respectively. As a result, the split window CPSSTs showed the smallest rms error of $0.72{\circ}C$. Defferences between the split window SSTs and the drifter temperatures appeared th have a linear tendency against the drifter temperatures and also against the differences between AVHRR channel 4 and 5 brighness temperatures. This indicates some possibilities that satelite-derived SSTs operationally calculated from the NOAA/NESDIS equation in the seas around Korea have been underestimated as compared with actural SSTs in case sea water temperature is relatively low or the atmosphere over the sea surface is very dry like in winter, while overstimated in case of high temperature or very moist atmospheric equations based on local sea measurements around Korea instead of global measurements should be derived.

Potential of Argo Drifters for Estimating Biological Production within the Water Column

  • Son, Seung-Hyun;Boss, Emmanuel;Noh, Jae-Hoon
    • Ocean Science Journal
    • /
    • v.41 no.2
    • /
    • pp.121-124
    • /
    • 2006
  • Argo drifters provide information of the vertical structure in the water column and have a potential for the improvement of understanding phytoplankton primary production and biogeochemical cycles in combination with ocean color satellite data, which can obtain the horizontal distribution of phytoplankton biomass in the surface layer. Our examples show that using Argo drifters with satellite-measured horizontal distribution of phytoplankton biomass at the sea surface allow an improved understanding of the development of the spring bloom. The other possible uses of Argo drifter are discussed.

Analysis of Drifter's Critical Performance Factors Using Its Hydraulic Analysis Model (드리프터 유압 해석모델을 활용한 성능격차 유발 인자 접근 사례)

  • Noh, Dae-Kyung;Seo, Jaho;Park, Jin-Sun;Park, James;Jang, Joo-Sup
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.3
    • /
    • pp.33-40
    • /
    • 2014
  • Drifter is equipment which is hard to localize. Performance of prototype hasn't performed well compared to product of leading companies even though advanced foreign firm's product were dead copied. This study shows cases of approaching the factor which produces performance gap through drifter hydraulic analysis model which is core component of rock drill. Progression of procedure is following. 1) Securing reliability of the analysis model by comparing impact test result with analysis result. 2) Drawing a graph which indicates performance gap between prototype and drifter of advanced foreign firm by using analysis model. 3) Approaching the factor which produces performance gap with analysing variable of the analysis model. Software used for this analysis is SimulationX.

Correction of Drifter Data Using Recurrent Neural Networks (순환신경망을 이용한 뜰개의 관측 데이터 보정)

  • Kim, Gyoung-Do;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.3
    • /
    • pp.15-21
    • /
    • 2018
  • The ocean drifter is a device for observing the ocean weather by floating off the sea surface. The data observed through the drifter is utilized in the ocean weather prediction and oil spill. Observed data may contain incorrect or missing data at the time of observation, and accuracy may be lowered when we use the data. In this paper, we propose a data correction model using recurrent neural networks. We corrected data collected from 7 drifters in 2015 and 8 drifters in 2016, and conducted experiments of drifter moving prediction to reflect the correction results. Experimental results showed that observed data are corrected by 13.9% and improved the performance of the prediction model by 1.4%.

Accuracy Assessment of Sea Surface Temperature from NOAA/AVHRR Data in the Seas around Korea and Error Characteristics

  • Park, Kyung-Ae;Lee, Eun-Young;Chung, Sung-Rae;Sohn, Eun-Ha
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.663-675
    • /
    • 2011
  • Sea Surface Temperatures (SSTs) using the equations of NOAA (National Oceanic and Atmospheric Administration) / NESDIS (National Environmental Satellite, Data, and Information Service) were validated over the seas around Korea with satellite-tracked drifter data. A total 1,070 of matchups between satellite data and drifter data were acquired for the period of 2009. The mean rms errors of Multi- Channel SSTs (MCSSTs) and Non-Linear SSTs (NLSSTs) were evaluated to, in most of the cases, less than $1^{\circ}C$. However, the errors revealed dependencies on atmospheric and oceanic conditions. For the most part, SSTs were underestimated in winter and spring, whereas overestimated in summer. In addition to the seasonal characteristics, the errors also presented the effect of atmospheric moist that satellite SSTs were estimated considerably low ($-1.8^{\circ}C$) under extremely dry condition ($T_{11{\mu}m}-T_{12{\mu}m}$ < $0.3^{\circ}C$), whereas the tendency was reversed under moist condition. Wind forcings induced that SSTs tended to be higher for daytime data than in-situ measurements but lower for nighttime data, particularly in the range of low wind speeds. These characteristics imply that the validation of satellite SSTs should be continuously conducted for diverse regional applications.

Surface current measurements using lagrangian Drifters in Anmok (소형 표류부이를 이용한 안목해안 표층 연안류 관측)

  • Lim, Hak Soo;Kim, Mujong;Shim, Jae-Seol
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.spc
    • /
    • pp.245-253
    • /
    • 2017
  • In this study, surface currents measured by small lagrangian GPS drifters (Aquadrifter) in Anmok coastal waters were analysed to account for the variability of nearshore surface current and wave-induced current to understand sediment transport mechanism near the crescentic bars in the surf-zone and near Kangneung breakwater and submerged breakwater in Anmok. The 8 times lagrangian drifter experiments were conducted mostly during in 2nd, 3rd, 4th intensive measurements in winter, summer, and spring seasons with long-term wave observation at the station W1. The analysed surface currents near the breakwaters in Anmok show that wave-induced currents at the middle of the submerged breakwater were separated and flowed toward the shoreline but offshore currents were dominant through the channels between the breakwaters. The longshore currents near the shoreline were flowed to the northwest (southeast) depending on the incoming waves from ENE (NNE). The surface nearshore offshore currents were generated mostly by waves and winds in case of high and low wave energy environments. Using the small-size lagrangian surface drifter experiments, we successfully measured longshore and offshore wave-induced currents in the surf-zone and near submerged breakwater close to Kangneung breakwater. The drifter experiment results show the availability of direct observation of nearshore surface currents to understand the mechanism of sediment transport analysing observed wave-induced current and ebb-current in the surf-zone generated by incoming waves and local winds.

Assessment of Ocean Surface Current Forecasts from High Resolution Global Seasonal Forecast System version 5 (고해상도 기후예측시스템의 표층해류 예측성능 평가)

  • Lee, Hyomee;Chang, Pil-Hun;Kang, KiRyong;Kang, Hyun-Suk;Kim, Yoonjae
    • Ocean and Polar Research
    • /
    • v.40 no.3
    • /
    • pp.99-114
    • /
    • 2018
  • In the present study, we assess the GloSea5 (Global Seasonal Forecasting System version 5) near-surface ocean current forecasts using globally observed surface drifter dataset. Annual mean surface current fields at 0-day forecast lead time are quite consistent with drifter-derived velocity fields, and low values of root mean square (RMS) errors distributes in global oceans, except for regions of high variability, such as the Antarctic Circumpolar Current, Kuroshio, and Gulf Stream. Moreover a comparison with the global high-resolution forecasting system, HYCOM (Hybrid Coordinate Ocean Model), signifies that GloSea5 performs well in terms of short-range surface-current forecasts. Predictions from 0-day to 4-week lead time are also validated for the global ocean and regions covering the main ocean basins. In general, the Indian Ocean and tropical regions yield relatively high RMS errors against all forecast lead times, whilst the Pacific and Atlantic Oceans show low values. RMS errors against forecast lead time ranging from 0-day to 4-week reveal the largest increase rate between 0-day and 1-week lead time in all regions. Correlation against forecast lead time also reveals similar results. In addition, a strong westward bias of about $0.2m\;s^{-1}$ is found along the Equator in the western Pacific on the initial forecast day, and it extends toward the Equator of the eastern Pacific as the lead time increases.

Study of a Recurring Anticyclonic Eddy off Wonsan Coast in Northern Korea Using Satellite Tracking Drifter, Satellite Ocean Color and Sea Surface Temperature Imagery (위성원격탐사를 이용한 동해 원산연안의 재발생 와동류 연구)

  • 서영상;장이현;김정희
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.3
    • /
    • pp.211-220
    • /
    • 2000
  • Even though recurring eddies at the terminal end of the East Korean Warm Current have been identified in the thermal infrared imagery from the NOAA/AVHRR sensor and ocean color data from Orbview-2/SeaWiFS sensor, it is difficult to make observation in the field regarding recurring eddies located around the Wonsan coastal area in North Korea. But we could get in situ data related to an eddy from an ARGOS satellite tracking drifter trapped in the eddy on January 4th, 1999. An ARGOS drifter, a NOAA satellite tracked buoy was trapped by the eddy during January 4th.March 18, 1999. The ARGOS drifter rotated 10 times per 72 days on the edge of the eddy located at $39^{\circ}N$, $129^{\circ}E$. The diameter of the eddy was about 100 km. The horizontal rotation velocity of the recurring cold-core anti-cyclonic eddy was 1.53 km/h(42 cm/sec). The sea surface temperatures of the eddy varied from $14.7^{\circ}C$ on January 5, 1999 to $9.6^{\circ}C$ on March 18,1999. To study the mechanism of the recurring eddy. we tried to find out the relationship between the vector of the drifter moving in the eddy and the wind vector in Sokcho and Ulleung Island located near the eddy in southern Korea, and the difference in sea level between Ulleung Island and Mukho. We hope the results of this study would be useful for calibration and validation data of simulation and numerical modeling studies of the recurring eddy.

Estimation of Mean Surface Current and Current Variability in the East Sea using Surface Drifter Data from 1991 to 2017 (1991년부터 2017년까지 표층 뜰개 자료를 이용하여 계산한 동해의 평균 표층 해류와 해류 변동성)

  • PARK, JU-EUN;KIM, SOO-YUN;CHOI, BYOUNG-JU;BYUN, DO-SEONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.208-225
    • /
    • 2019
  • To understand the mean surface circulation and surface currents in the East Sea, trajectories of surface drifters passed through the East Sea from 1991 to 2017 were analyzed. By analyzing the surface drifter trajectory data, the main paths of surface ocean currents were grouped and the variation in each main current path was investigated. The East Korea Warm Current (EKWC) heading northward separates from the coast at $36{\sim}38^{\circ}N$ and flows to the northeast until $131^{\circ}E$. In the middle (from $131^{\circ}E$ to $137^{\circ}E$) of the East Sea, the average latitude of the currents flowing eastward ranges from 36 to $40^{\circ}N$ and the currents meander with large amplitude. When the average latitude of the surface drifter paths was in the north (south) of $37.5^{\circ}N$, the meandering amplitude was about 50 (100) km. The most frequent route of surface drifters in the middle of the East Sea was the path along $37.5-38.5^{\circ}N$. The surface drifters, which were deployed off the coast of Vladivostok in the north of the East Sea, moved to the southwest along the coast and were separated from the coast to flow southeastward along the cyclonic circulation around the Japan Basin. And, then, the drifters moved to the east along $39-40^{\circ}N$. The mean surface current vector and mean speed were calculated in each lattice with $0.25^{\circ}$ grid spacing using the velocity data of surface drifters which passed through each lattice. The current variance ellipses were calculated with $0.5^{\circ}$ grid spacing. Because the path of the EKWC changes every year in the western part of the Ulleung Basin and the current paths in the Yamato Basin keep changing with many eddies, the current variance ellipses are relatively large in these region. We present a schematic map of the East Sea surface current based on the surface drifter data. The significance of this study is that the surface ocean circulation of the East Sea, which has been mainly studied by numerical model simulations and the sea surface height data obtained from satellite altimeters, was analyzed based on in-situ Lagrangian observational current data.