• Title/Summary/Keyword: Surface diffusion

Search Result 1,615, Processing Time 0.028 seconds

High Temperature Oxidation of Thermomechanically Treated Ti-45.4%Al-4.8%Nb Alloys (열기계적 처리한 Ti-45.4%Al-4.8%Nb 합금의 고온산화)

  • Kim Jae-Woon;Lee Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.457-461
    • /
    • 2004
  • The thermomechanically treated $Ti-45.4\%Al-4.8\%Nb(at\%)$ alloy was oxidized between 800 and $1000^{\circ}C$ in air, and the oxidation characteristics were studied. The dissolution of Nb in the oxide scale was observed from the TEM study. The Pt marker test revealed that the oxidation process was controlled by the outward diffusion of Ti ions and the inward diffusion of oxygen ions. During oxidation, the evaporation of Nb-oxides was found to occur to a small amount. Niobium tended to pile-up at the lower part of the oxide scale, which consisted primarily of an outer $TiO_2$ layer, and an intermediate $Al_{2}O_{3}-rich$ layer, and an inner mixed layer of ($TiO_{2}+Al_{2}O_{3}$).

Hydrogen Separation from Binary and Quaternary Gas Mixtures Using Organic Templating Silica Membrane (유기템플레이팅 실리카막을 이용한 이성분 및 사성분 수소 분리)

  • Moon, Jong-Ho;Bae, Ji-Han;Chung, Jong-Tae;Lee, Jae-Wook;Lee, Chang-Ha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.9-12
    • /
    • 2007
  • The transport mechanisms of the MTES (methyltriethoxysilane) templating silica/a-alumina composite membrane were evaluated by using four binary and one quaternary hydrogen mixtures through permeation experiments at unsteady- and steady-states. Since the permeation flux in the MTES membrane, through the experimental and theoretical studies, was affected by molecular sieving effects as well as surface diffusion properties, the kinetic and equilibrium separation should be considered simultaneously according to molecular properties. In order to depict the transient multi-component permeation on the templating silica membrane, the GMS (generalized Maxwell-Stefan) and DGM (dust gas model) were adapted to unsteady-state material balance.

  • PDF

Hydrogen Separation by Compact-type Silica Membrane Process (컴팩트 타입 실리카막 공정을 이용한 수소 분리)

  • Moon, Jong-Ho;Bae, Ji-Han;Lee, Sang-Jin;Chung, Jong-Tae;Lee, Chang-Ha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.336-339
    • /
    • 2006
  • With the steady depletion off fossil fuel reserves, hydrogen based energy sources become increasingly attractive. Therefore hydrogen production or separation technologies, such as Bas separation membrane based on adsorption technology, have received enormous attention in the industrial and academic fields. In this study, the transport mechanisms of the MTES (methyltriethoxysilane) templating silica/a-alumina composite membrane were evaluated by using unary, binary and quaternary hydrogen gas mixtures permeation experiments at unsteady- and steady-states. Since the permeation flux in the MTES membrane, through the experimental and theoretical study, was affected by molecular sieving effects as well as surface diffusion properties, the kinetic and equilibrium separation should be considered simultaneously in the membrane according to molecular properties. In order to depict the transient multi-component permeation on the templating silica membrane, the GMS (generalized Maxwell-Stefan) and DGM (dust Bas model) were adapted to unsteady-state material balance

  • PDF

Mechanisms of gas permeation through microporous membranes - A review

  • Hwang, Sun-Tak
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.09a
    • /
    • pp.1-13
    • /
    • 1995
  • A review is presented for various gas tranport mechanisms through microporous membranes of both polymeric and inorganic materials. Different transport modes manifest depending on the pore size and the flow regime, which is a function of pressure, temperature, and the inateraction between gas molecules and the pore walls. For microporous membranes whose pores are small and the intenal surface area huge, the surface diffusion becomes a significant factor. If the pores become even smaller, them the transport mechanism will be more of an activated diffusion type. When conditions are right capillary condensation will take place to create an enormous capillary pressure gradient, which will greatly enhance the permeation flux. At the same time the capillary condensate of the heavier component may block the membrane pores denying the passage of the lighter gas molecules. All of these phenomena will influence the separation of mixtures.

  • PDF

Thermodynamics of Partitioning of Substance P in Isotropic Acidic Bicelles

  • Baek, Seung Bin;Lee, Hyeong Ju;Lee, Hee Cheon;Kim, Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.743-748
    • /
    • 2013
  • The temperature dependence of the partition coefficients of a neuropeptide, substance P (SP), in isotropic acidic bicelles was investigated by using a pulsed field gradient nuclear magnetic resonance diffusion technique. The addition of negatively charged dimyristoylphosphatidylserine to the neutral bicelle changed the SP partitioning a little, which implies that the hydrophobic interaction between the hydrophobic residues of SP and the acyl chains of lipid molecules is the major interaction while the electrostatic interaction is minor in SP binding in a lipid membrane. From the temperature dependence of the partition coefficients, thermodynamic functions were calculated. The partitioning of SP into the acidic bicelles is enthalpy-driven, as it is for small unilamellar vesicles and dodecylphosphocholine micelles, while peptide partitioning into a large unilamellar vesicle is entropy-driven. This may mean that the size of lipid membranes is a more important factor for peptide binding than the surface curvature and surface charge density.

The Analysis of Chloride Ion Penetration into a Concrete Structure in Marine Environment (해안환경하에 있는 콘크리트의 염분침투해석)

  • Cho, Sun-Kyu;Jeon, Gui;Shin, Chee-Burm
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.68-74
    • /
    • 1998
  • An increase of concrete construction in marine environments as well as an increasing use of marine aggregate at the mixing stage of concrete has provoked an important problem. A high concentration of chloride ion in the vicinity of steel bars in concrete is the principal cause of premature reinforcement corrosion in concrete structures. In this study, the behavior of chloride ions introduced into concrete from concrete surface by marine evironment was analysed. A mathematical model including the diffusion of chloride ion in aqueous phase of pores, the adsorption and desorption of chloride ions to and from the surface of solid phase of concrete and the chemical reactions of chloride ions with solid phase was presented. Finite element method was employed to carry out numerical analysis. The results of this study may be used to predict the onset of reinforcement corrosion and to identify the maximum limit of chloride ions contained in concrete admixtures.

  • PDF

A study on a development of a measurement technique for diffusion of oil spill in the ocean (디지털 화상처리에 의한 해양유출기름확산 계측기법개발에 관한 연구)

  • 이중우;김기철;강신영;도덕희
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.211-221
    • /
    • 1998
  • A digital image processing technique which is able to get the velocity vector distribution of a surface of the spilled oil in the ocean without contacting the flow itself. This technique is based upon the PIV(Particle Imaging Velocimetry) technique and its system mainly consists of a high sensitive camera, a CCD camera, an image grabber, and a host computer in which an image processing algorithm is adopted for velocity vector acquisition. For the acquisition of the advective velocity vector of floating matters on the ocean, a new multi-frame tracking algorithm is proposed, and for the acquisition of the diffusion velocity vector distribution of the spilt oil onto the water surface, a high sensitive gray-level cross-correlation algorithm is proposed.

  • PDF

Efficiency Improvement of $N^+P$ Junction Solar Cell by Forming V-Groove on the Silicon Surface (V형 홈 형성에 의한 $N^+P$ 접합형 태양전지의 효율 개선)

  • Chae, Sang-Hun;Kim, Jae-Chang;Lee, Yang-Seong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.1
    • /
    • pp.45-50
    • /
    • 1984
  • V-groove N+P solar cell is fabricated by thermal diffusion in silicon wafer with (100) crystal structure. To form the V-grooves in (100) silicon surface, a mixture of etylen-diamine, water, pyrocathecol is used as the etchant of anisotropic etching. Under light intensity of 100mW/$\textrm{cm}^2$, the efficiency of the V-groove solar cell is 2.5-3.5% greater than the conventional N+P solar cell and 0.4-0.6% greater than the texturized one.

  • PDF

Effects of silicone fluid in silicone rubber composite (실리콘 고무 복합재료의 물성에 대한 실리콘 오일의 영향)

  • Han, D.H.;Kang, D.P.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1670-1672
    • /
    • 1996
  • Silicone rubber composite is very suitable for insulation materials because of it's hydrophobicity, mass productivity, and design flexibility. A study of the diffusion of silicone fluid from the bulk to the surface of the silicone rubber composite using dynamic contact angle meter and scanning electron microscopy(SEM) is reported. A study of the mechanical strength of the silicone rubber composite having various silicone fluids and fluid contents is also reported. It has been found that the kind of silicone fluid affects the diffusion rate of the silicone fluid from the bulk to the surface of the silicone rubber composite after artificial pollution.

  • PDF

Sintering Behavior of $TiB_2$-SiC Composites ($TiB_2$-SiC 복합재료의 소결거동)

  • 윤재돈
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 1994
  • The effect of SiC addition on sintering behaviors and microstructures of TiB2 ceramics were studied. The sintering of TiB2 was limited due to the surface diffusion and rapid grain growth at high temperature. However the addition of SiC to TiB2 ceramics improved the densification to above 99% of the theoretical density. The sintering of TiB2-SiC composite starts at 120$0^{\circ}C$ with the melting of the oxides in particle surface as impurities. After the reduction of the oxide by additional cabon at above 140$0^{\circ}C$, the grain boundary diffusion through the interface of TiB2-SiC play an important role. TEM observation showed neither chemical reactions nor other phases formed at the TiB2-SiC interfaces but the microcracks were observed due to the mismatch of thermal expansion between TiB2-SiC.

  • PDF