• Title/Summary/Keyword: Surface contaminants

Search Result 379, Processing Time 0.028 seconds

Analysis of Polymeric Insulators Exposed to In-service Conditions (실 포설 환경에 노출된 송전용 고분자애자의 평가)

  • Lee, Sang-Jin;Youn, Bok-Hee;Bai, Kyoung-Moo;Jeon, Seung-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.248-250
    • /
    • 2004
  • We have investigated the surface state of 154kV polymeric insulators exposed to in-service conditions for about five years. In order to evaluate surface aging of silicone rubber exposed to real field environments, we used various analytic methods such as contact angle, ATR-FTIR, SEM-EDS. Although contaminants were accumulated on weathershed surface, polymeric insulator has retained its intrinsic surface hydrophocity. In addition, ATR-FTIR confirmed the diffusion layer of a low molecular weight silicone fluid on surface layer and no surface cracking and chalking were Indicated by SEM. Polymeric insulators have still retained their improved pollution performance over porcelain insulators. That will lead to very low frequency of flashovers throughout their useful life, often under contaminated conditions.

  • PDF

A Study of Cleaning Technology for Zirconium Scrap Recycling in the Nuclear Industry (원자력산업에서 지르코늄 스크랩 재활용을 위한 세정기술에 관한 연구)

  • Lee, Ji-Eun;Cho, Nam-Chan;An, Chang-Mo;Noh, Jae-Soo;Moon, Jong-Han
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.264-271
    • /
    • 2013
  • In this study, we optimized the removal condition of contaminants attached on the scrap surface to recycle the scrap generated from the Zr alloy tube manufacturing process back to the nuclear grade. The main contaminant is remnant of watersoluble cooling lubricant that is used in the pilgering manufacture during the tube production, and it is assumed to be compressed and carbonized on the surface of tube. Zirlo alloy tube of ${\phi}9.50mm$, which has high occurrence frequency of scrap, was selected as the object to be cleaned, and cleaning abilities of reagents were evaluated by measuring the characteristics of contaminants remained and by analyzing the surface of the tube after cleaning process. For evaluation of each cleaning agent, we selected two types of sodium hydroxide series and three types of potassium hydroxide series. Furthermore, to confirm dependence on tempe-rature and ultrasonic intensities, cleaning at the room temperature, $40^{\circ}C$, and $60^{\circ}C$ was conducted, and results showed that higher the cleaning temperature and higher the ultrasonic intensity, better the cleaning effect. As a result of the bare-eye inspection, while the use of sodium hydroxide provided satisfactory condition on the tube surface, the use of potassium hydroxide series provided satisfactory condition on the tube surface only when the ultrasonic intensity was over 120 W. In the cleaning effect analysis using the gravimetric method, cleaning efficiency of sodium hydroxide series was as high as 97.6% ($60^{\circ}C$, 120 W), but since the tube surface condition was poor after the use of potassium hydroxide, the gravimetric method was not appropriate. In the analytical result of surface contaminants on the tube surface, C, O, Ca, and Zr were detected, and mainly C and O dominated the proportion of contaminants. It was also found that the degree of cleaning on the tube affected the componential ratio of C and O; if the degree of cleaning is high, or if cleaning is well-conducted, the proportion of C is decreased, and the proportion of O is increased. Based on these results, optimal cleaning for application in the industry can be expected by categorizing cleaning process into three steps of Alkali cleaning, Rinsing, and Drying and by adjusting cleaning parameters in each step.

Material Analysis and Surface Condition Monitoring of Standing Buddha Statue in the Gwanchoksa Temple, Nonsan, Korea (논산 관촉사 석조미륵보살입상의 재질분석과 표면상태 변화 모니터링)

  • Lee, Myeong Seong;Choie, Myoungju;Yoo, Ji Hyun;Ahn, Yu Bin
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.227-236
    • /
    • 2019
  • Medium to coarse-grained biotite granodiorite was used to build the Standing Buddha Statue in the Gwanchoksa temple. An ancient document revealed the period and place of constructing the statue: it was made in the northwest of Mt. Banyasan and then moved eastward. Also, the comparison of standing Buddha statue and basement rock in terms of texture, magnetic susceptibility, and gamma spectrometer shows that they have similar characteristics, which is considered to be the same provenance rock. The damage caused by surface contaminants observed in the statue seems to be a combined effect of environmental factors and aging of the epoxy resin. After removal of the contaminants in 2007, the contamination has resumed, and continuous monitoring is necessary. Algal engraftment becomes faster when biological contamination occurs on the surface of stone cultural heritage. Since the secondary lichen growth forms a symbiosis with mold, it is necessary to observe the spatial and distributional changes. Also, the aging epoxy resin may cause secondary damage due to contaminants generated due to the determination of salts, and deterioration of bonding strength due to breaking out. Thus it is desirable to secure stability through proper conservation management.

A Study on Chemical Compositions of Sediment and Surface Water in Nakdong River for Tracing Contaminants from Mining Activities (광해오염원 추적을 위한 낙동강 지역 퇴적물 및 하천수의 화학조성 연구)

  • Kim, Jiyun;Choi, Uikyu;Baek, Seung-Han;Choi, Hye-Bin;Lee, Jeonghoon
    • Journal of the Korean earth science society
    • /
    • v.37 no.4
    • /
    • pp.211-217
    • /
    • 2016
  • There have been found mine tailings, wastes, and mining drainage scattered in the area of Nakdong River due to the improper maintenance of the abandoned mines. These contaminants can flow into rivers during the heavy rain periods in summer. Along the study area beginning Seokpo-myeon, Bonghwa-gun of Gyeongsangbuk-do untill Dosan-myeon, Andong-si, there are one hundred five mines including sixty metalliferous mines and forty-five nonmetal mines, which can adversely affect the adjacent rivers. To verify the contamination, we collected sediments, seepage water and surface water for a year both in rainy season and dry season. This study found that sediments, containing high concentrations of heavy metals caused by mining activities, are dispersed throughout the entire river basin (68 sample points with pollution index, based on the concentration of trace element, (PI) >10 among the total of 101 samples). The results of river water analysis indicated the increased concentrations of arsenic and cadmium at branches from Seungbu, Sambo, Okbang and Janggun mine, which concerns that the river water may be contaminated by mining drainage and tailing sediments. However, it is difficult to sort out the exact sources of contamination in sediments and waters only by using the chemical compositions. Thus the control of mining pollution is challenging. To prevent water from being contaminated by mining activities, we should be able to divide inflow rates from each origin of the mines. Therefore, there should be a continued study about how to trace the source of contaminants from mining activities by analyzing stable isotopes.

Contamination Characteristics of Polymer Insulator using High Frequency Current Transformer (HF-CT센서를 이용한 고분자애자의 오손특성)

  • Park, Jae-June
    • The Journal of Information Technology
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2005
  • Investigations of high frequency current transformer(HF-CT) waveform characteristics of the surface leakage on kaolin polluted EPDM polymer insulators have been performed. This work is part of a program aimed at examining the potential for HF-CT waveform characteristics analysis to provide information about the environment contaminants and environment condition of polymer insulators. The investigation reported examined the HF-CT waveform characteristics at high frequencies. The use of high frequency measurements for on-line applications reduces electrical inference. This work was peformed utilizing HF-CT to monitor of surface polluted discharge. It was found that HF-CT waveform frequency spectrum, magnitude depend on importantly the duration of the surface discharge activity.

  • PDF

Nanofinger Sensors for Health-related Applications

  • Kim, An-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.113.1-113.1
    • /
    • 2014
  • Surface-enhanced Raman scattering (SERS) has long been projected as a powerful analytical technique for chemical and biological sensing applications. Pairing with portable Raman spectrometers makes the technique extremely appealing as real-time sensors for field application. However, the lack of reliable, uniform, low cost and ease-of-use SERS enhancement structures has prevented the wide adoption of this technique for general applications. We have discovered a novel hybrid structure based on the high-density and uniform arrays of gold nanofingers over a large surface area for SERS applications. The nanofingers are flexible and their tips can be brought together to trap molecules to mimic the biological system. We report here a rapid, simple, low-cost, and sensitive method of detecting trace level of food contaminants by using nanofinger chips based on portable SERS technique. We also present here the characterization of surface reaction of target molecules with our gold nanofinger substrates and the effect of nanofinger closing towards SERS performance. This new type of nano-structures can potentially revolutionize the medical and biologic research by providing a novel way to capture, localize, manipulate, and interrogate biological molecules with unprecedented capabilities.

  • PDF

The influence of heavy metal on microbial biodegradation of organic contaminants in soil (토양내의 중금속이 유기오염물질 생분해에 미치는 영향 연구)

  • 최재영;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.196-201
    • /
    • 2000
  • The influence of adsorption on cadmium toxicity to soil microorganisms in smectite-rich soils and sediments was quantified as a function of solution and sorbent characteristics. Adsorption and surface complexation experiments were conducted to infer Cd sorption mechanisms to a reference smectite and three fractions of a Veritsol soil, and to elucidate the effects of the surface complexation on Cd bioavailability and toxicity in soils and sediments. Cadmium adsorption isotherms conformed to the Langmuir adsorption model, with adsorptive capacities of the different samples dependent on their characteristics. Equilibrium geochemical modeling (MINTEQA2) was used to predict the speciation of Cd in the soil suspensions using Langmuir and Triple Layer surface complexation models. The influence of adsorption and surface complexation on cadmium toxicity to soil microorganisms was assessed indirectly through the relative change in microbial hydrolysis of fluorescein diacetate (FDA) as a function of total Cd concentration and sorbent characteristics. Adsorption decreased the toxicity of Cd to soil microorganisms. Inner-sphere complexation is more effective than outer-sphere complexation in reducing the bioavailability and toxicity of heavy metals in soils and sediments.

  • PDF

A Study on the Investigation and Analysis of the Passenger Car Surface Contamination (철도차량 객차외측면 오염도 조사ㆍ분석 연구)

  • 김용기;정우성;박덕신;이덕희
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.543-550
    • /
    • 2000
  • This study investigated and analysed the surface contaminant of the passenger car. Because the surface contaminants change the paint color of the passenger car, it is necessary to cleanse them for prolongating the maintenance period, Analysis method of the contaminant according to the kind of the passenger car, the line and the part of the train are systemized. Contamination mechanism and deterioration reason of paint colors on the surface of passenger car are studied. We expect that results of this study could contribute to providing of a fundamental research data, which is necessary for the development of a low-pollution passenger car cleanser.

  • PDF

Laser surface cleaning of simulated radioactive contaminants in various technological environments

  • Maxim Cheban;Serafima Filatova;Yaroslav Kravchenko;Konstantin Scherbakov;Dmitry Mamonov;Sergey Klimentov;Maxim Savinov;Maxim Chichkov
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2775-2780
    • /
    • 2024
  • Special methods for cleaning surfaces of stainless steel with a coating simulating radioactive contamination have been developed and studied. The removal of simulated surface contamination was performed using lasers in the micron spectral range with pulse durations of 8 ns and 270 fs. Optimal cleaning modes were determined for gas and liquid environments, achieving surface cleaning coefficient of over 90% in a single pass. A correlation between the degree of cleaning in liquids and the viscosity of the environment was discovered.

Surface Degradation of Silicone Rubber Insulator by Salt-fog Test (Salt-fog 분무에 따른 실리콘 고무 애자의 표면열화)

  • 장동욱;박영국;강성화;이용희;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.509-512
    • /
    • 1999
  • The main problem in porcelain as a high voltage insulator is that the water film is felled on the insulator surface due to rain, flog, and dew. In the presence of contamination. leakage current increases which may lead to flashover that could be followed by an outage of the power system. These days, high voltage polymer outdoer insulators have been studied and widely used, because they have excellent electrical and mechanical properties, superior performance of flashover for contamination. light weight, easy installation or handling. no maintenance during service, competitive price, and so on. First of a1l the excellent performance of the silicone rubber in polluted and wet conditions is attributed to the ability of the material to maintain the hydrophobicity of the surface in the presence of severe contaminants and wet conditions. This is due to a low surface energy of the silicone rubber. But the leakage current and some surface discharge occurs on the surface of insulator when the insulator is used for a long time. So the leakage current and the surface discharge current are important lo estimate the condition of the silicone rubber surface. In this paper, the average leakage current the surface discharge current the surface rubber surface with the salt fog condition for the first stage.

  • PDF