• Title/Summary/Keyword: Surface complexation

Search Result 89, Processing Time 0.028 seconds

Computational Study on the Conformational Characteristics of Calix[4]pyrrole Derivatives

  • Hong, Joo-Yeon;Son, Min-Kyung;Ham, Si-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.423-428
    • /
    • 2009
  • The comparative study of three calix[4]heterocycles (calix[4]pyrrole, calix[4]furan, and calix[4]thiophene) has been theoretically performed by using high-level density functional theory (DFT) at the MPWB1K/6-311G$^{**}$//B3LYP/6- 311G$^{**}$ level. The effect of different hetero-atoms (nitrogen, oxygen, and sulfur) placed in the heterocycles on the conformational flexibility, thermodynamic stability order, cavity sizes, charge distributions, and binding propensities are examined. The thermodynamic stability differences between the conformers are found to be much greater in calix[4]pyrrole compared to those in calix[4]furan and calix[4]thiophene. Relatively larger NH group and higher dipole of a pyrrole ring in calix[4]pyrrole contribute to the higher energy barrier for the conformational conversions and relatively rigid potential energy surface compared to the case of calix[4]furan and calix[4]thiophene. The computational results herein provide theoretical understanding of the conformational flexibility and the thermodynamic nature which can be applied to understand the complexation behavior of the three calix[4]heterocycles.

Pervaporation separation of polyion complex composite membranes for the separation of water/alcohol mixtures: characterization of permeation behavior by using molecular modeling techniques

  • Kim, Sang-Gyun;Lee, Yoon-Gyu;Jonggeon Jegal;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.91-94
    • /
    • 2003
  • In this work, the physicochemical properties for permeant molecules and polyion complex membrane prepared by complexation between SA and chitosan were determined by using molecular modeling methods, and the permeation behaviors of water and alcohol molecules through the PIC membrane have been investigated. In the case of penetrant molecule, the experimental results showed that the prepared membrane was excellent pervaporation performance result in most solution, and the selectivity and permeability of the membrane were dependent on the molecular size, the polarity and the hydrophilic surface of permeant organics. However, the separation behavior of methanol aqueous solution exhibited other permeation tendency with other feed solutions and contradictory result. That is, the membrane were preferentially permeable to methanol over water despite water molecule has stronger polarity and small molecular size than methanol molecule. In this study, the results were discussed from the viewpoint of chemical and physical properties between permeant molecules and membrane in the diffusion state.

  • PDF

Studies on Solvent Extraction and Flotation Technique Using Metal-Dithizone Complexes(II). Determination of Trace Elements in Water Samples by Solvent Sublation

  • 김영상;최윤석;최희선
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.10
    • /
    • pp.1036-1042
    • /
    • 1998
  • The preconcentration and determination of trace elements in water samples were studied by a solvent sublation utilizing dithizonate complexation. After metal dithizonates were formed, trace amounts of cadmium, cobalt, copper and lead were floated and extracted into small volume of a water-immiscible organic solvent on the surface of sample solution and determined in the solvent directly by GF-AAS. Several experimental conditions as formation condition of metal-dithizonate complexes, pH of solution, amount of dithizone, stirring time, the type and amount of surfactants, N2 bubbling rate and so on were optimized for the complete formation and effective flotation of the complexes. And also four kinds of light solvents were compared each other to extract the floated complexes, effectively. After the pH was adjusted to 4.0 with 5 M HNO3, 8.0 mL of 0.05% acetone solution of dithizone was added to 1.00 L water sample. The dithizonate complexes were flotated and extracted into the upper methyl isobutylketone (MIBK) layer by the addition of 2.0 mL 0.2% ethanolic sodium lauryl sulfate solution and with the aid of small nitrogen gas bubbles. And this solvent sublation method was applied to the analysis of real water samples and good results of more than 85% recoveries were obtained in spiked samples.

Surface Mmodification of Poly(DL-lactide-co-glycolide) Nanoparticle (Poly(DL-lactide-co-glycolide) 나노입자의 표면 수식)

  • Oh, Yu-Mi;Jung, Taek-Kyu;Chi, Sang-Cheol;Shin, Byung-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.601-607
    • /
    • 2003
  • We studied on preparation of nanoparticles modified surface using biodegradable polymer, poly(DL-lactide-co-glycolide) (PLGA). Two kinds of PLGA nanoparticles were prepared by a spontaneous emulsification solvent diffusion (SESD) method using cetyltrimethylammonium chloride (CTAC) and tetradecyltrimethylammonium bromide (TTAB) as a cationic surfactant and polyethylene glycol-block-polypropylene glycol copolymer (Lutrol F68) as a nonionic surfactant. Model protein was coated on the surface of nanoparticles by the ionic complexation. The model protein was that influenza vaccine ($H_3N_2,\;H_1N_1$, B strain) labeled with NHS-fluorescein. The sizes of cationic nanoparticles were 140-160 nm and the surface charges were 50-60 mV. The sizes of nonionic nanoprticles were 80-90 nm and the surface charge was -10 mV. After coating vaccine on the surface of nanoparticles, the sizes of cationic nanoparticles were increased to 380-400 nm and the size of nonionic nanoparticles was not increased. The amount of coated vaccine on the cationic nanoparticles was 22.73 ${\mu}g$/mg.

Evaluation of the Removal Properties of Cu(II) by Fe-Impregnated Activated Carbon Prepared at Different pH (pH를 달리하여 제조한 3가철 첨착 활성탄에 의한 구리 제거특성 평가)

  • Yang, Jae-Kyu;Lee, Nam-Hee;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.345-351
    • /
    • 2008
  • Fe-impregnated activated carbon(Fe-AC) was prepared by Fe(III) loading on activated carbon(AC) in various preparation pH. In order to evaluate the stability of Fe-AC, dissolution of iron from Fe-AC in acidic conditions was measured. In addition, batch experiments were conducted to monitor the removal efficiency of copper by Fe-AC. Results of stability test for Fe-AC showed that the amount of extracted iron increased with contact time but decreased with increasing solution pH. The dissolved amount of iron gradually increased at solution pH 2 and finally 13% of the total iron loaded on activated carbon was extracted after 12 hr. However dissolution of iron was negligible over solution pH 3. Removal of Cu(II) by Fe-AC was greatly affected by solution pH and was decreased as solution pH increased as well as initial Cu(II) concentration decreased. Surface complexation modeling was performed by considering inner-sphere complexation reaction and using the diffuse layer model with MINTEQA2 program.

Effect of Soil Organic Matter on Arsenic Adsorption in the Hematite-Water Interface: Chemical Speciation Modeling and Adsorption Mechanism (비소의 적철석 표면 흡착에 토양유기물이 미치는 영향: 화학종 모델링과 흡착 기작)

  • Ko, Il-Won;Kim, Ju-Yong;Kim, Gyeong-Ung;An, Ju-Seong;Davis, A. P.
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.23-31
    • /
    • 2005
  • This study was performed to investigate the effect of humic acid on the adsorption of arsenic onto hematite and its binding mechanism through the chemical speciation modeling in the binary system and the adsorption modeling in the ternary system. The complexation modeling of arsenic and humic acid was suitable for the binding model with the basis of the electrostatic repulsion and the effect of bridging metal. In comparison with the experimental adsorption data in the ternary system, the competitive adsorption model from the binary intrinsic equilibrium constants was consistent with the amount of arsenic adsorption. However, the additive rule showed the deviation of model in the opposite way of cationic heavy metals, because the reduced organic complexation of arsenic and the enhanced oxyanionic competition diminished the adsorption of arsenic. In terms of the reaction mechanism, the organic complex of arsenic, neutral As(III) and oxyanionic As(V) species were transported and adsorbed competitively to the hematite surface forming the inner-sphere complex in the presence of humic acid.

Solution Dynamics Studies for the Lck SH2 Domain Complexed with Peptide and Peptide-Free Forms

  • Yoon, Jeong-Hyeok;Chi, Myung-Whan;Yoon, Chang-No;Park, Jongsei
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.81-81
    • /
    • 1995
  • It is well known that Src Homology 2(SH2) domain in many intracellular signal transduction proteins is very important. The domain has about 100 amino acid residues and bind phosphotyrosine-containing peptide with high affinity and specificity. Lck SH2 domain is a Src-like, lymphocyte-specific tyrosine kinase. An 11-residue phosphopeptide derived from the hamster polvoma middle-T antigen, EPQp YEEIPIYL, binds with an 1 nM dissociation constant to Lck SH2 domain. And it is known that the phosphotyrosine and isoleucine residues of the peptide are tightly bound by two well-defined pockets on Lck SH2 domain's surface. To investigate the conformational changes during complexation of SH2 domain with phosphopeptide we have performed the molecular dynamics simulation for Lck SH2 domain with peptide and peptide-free form at look in aqueous solution. More than 3000 water molecules were incorporated to solvate Lck SH2 domain and peptide. Periodic boundary condition has been applied in molecular dynamics simulation. Data analysis with the results of that simulation shows that the phosphopeptide makes primary interaction with the Lck SH2 domain at six central residues, The comparison of the complexed and uncomplexed SH2 domain structures in solution has revealed only relatively small change. But the hydrophilic and hydrophobic pockets in the protein surface show the conformational changes in spite of the small structural difference between the complex and peptide-free forms.

  • PDF

Interaction of a Pyridyl-Terminated Carbosiloxane Dendrimer with Metal Ions at the Air-Water Interface

  • Lee, Burm-Jong;Kim, Seong-Hoon;Kim, Chung-kyun;Shin, Hoon-Kyu;Kwon, Young-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.6
    • /
    • pp.216-219
    • /
    • 2003
  • A new class of carbosiloxane dendrimer (G4-48PyP) terminated with 4-pyridylpropano I was synthesized and its possible application to functional thin films was examined through metal complexation and Langmuir-Blodgett (LB) technique. The highly concentrated periphery pyridyl groups of G4-48PyP were exposed on aq. aluminum ions at the air-water interface. The monolayers showed stability up to ca. 50 mN/m of surface pressure. When the subphase became acidic or alkaline, the monolayers changed to condensed phase. The presence of aluminum ions also caused reduction of the molecular area. The macroscopic images of the monolayers were monitored by Brewster angle microscopy (BAM) and only the images of dendrimer aggregates could be observed after the monolayer collapse. The surface images of the monolayer LB film were scanned by atomic force microscopy (AFM). The convex structures of single and aggregate molecules were directly observed. The structures of Langmuir-Blodgett (LB) films were characterized by FT-IR, UV-Vis, and X-ray photoelectron spectroscopy (XPS). The UV-Vis spectrum of the aluminum ion-complexed LB film showed additional band around 670nm, which was not found in the spectra of dendrimer itself or aq. aluminum ions. XPS spectra also supported the incorporation of aluminum ions into the LB films.

Relationship Between Mass Transfer and Degradation of Sorbed Phenanthrene in Goethite Catalyzed Fenton-like Oxidation Using Non-ionic/anionic Surfactant (Phenanthrene 의 goethite 촉매에 의한 Fenton 산화에 있어서 음이온/비이온 계면활성제의 영향)

  • Kim, Jeong-Hwan;Choi, Won-Ho;Kim, Jung-Hwan;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.207-212
    • /
    • 2009
  • Surfactants were used as representative anionic and non ionic surfactants to investigate the effect of mass transfer on the mineral-catalyzed Fenton-like oxidation of sorbed phenanthrene. Mass transfer of phenanthrene on the oxide surface or interlayer between aqueous and solid phases was generated by surfactant addition. Apparent solubility of phenanthrene was increased as surfactant concentration increasesd. In tests using Tween 80, oxidation of phenanthrene decreased as apparent solubility increased. High apparent solubility was not responsible for oxidation of sorbed phenanthrene in the sand due to the surfactant acted as a scavenger of degradation. In tests with SDS, $H_{2}O_{2}$ decomposition rate in Fenton-like oxidation was decreased by complexation between goethite and SDS. However, in tests using 32 mM of SDS, efficiency of phenanthrene treatment increased compared to the test without SDS addition. Therefore, suitable amount of SDS addition could provide optimum condition for phenanthrene oxidation on the oxide surface or interlayer between aqueous and solid phase, and decrease $H_{2}O_{2}$ decomposition, and as a result, phenanthrene removal efficiency can be improved.

Glutamic Acid-Grafted Metal-Organic Framework: Preparation, Characterization, and Heavy Metal Ion Removal Studies

  • Phani Brahma Somayajulu Rallapalli;Jeong Hyub Ha
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.556-565
    • /
    • 2023
  • Fast industrial and agricultural expansion result in the production of heavy metal ions (HMIs). These are exceedingly hazardous to both humans and the environment, and the necessity to eliminate them from aqueous systems prompts the development of novel materials. In the present study, a UIO-66 (COOH)2 metal-organic framework (MOF) containing free carboxylic acid groups was post-synthetically modified with L-glutamic acid via the solid-solid reaction route. Pristine and glutamic acid-treated MOF materials were characterized in detail using several physicochemical techniques. Single-ion batch adsorption studies of Pb(II) and Hg(II) ions were carried out using pristine as well as amino acid-modified MOFs. We further examined parameters that influence removal efficiency, such as the initial concentration and contact time. The bare MOF had a higher ion adsorption capacity for Pb(II) (261.87 mg/g) than for Hg(II) ions (10.54 mg/g) at an initial concentration of 150 ppm. In contrast, an increased Hg(II) ion adsorption capacity was observed for the glutamic acid-modified MOF (80.6 mg/g) as compared to the bare MOF. The Hg(II) ion adsorption capacity increased by almost 87% after modification with glutamic acid. Fitting results of isotherm and kinetic data models indicated that the adsorption of Pb(II) on both pristine and glutamic acid-modified MOFs was due to surface complexation of Pb(II) ions with available -COOH groups (pyromellitic acid). Adsorption of Hg(II) on the glutamic acid-modified MOF was attributed to chelation, in which glutamic acid grafted onto the surface of the MOF formed chelates with Hg(II) ions.