• Title/Summary/Keyword: Surface coating layer

Search Result 1,188, Processing Time 0.03 seconds

A Development of the Coated Lead Sinker for Gill-net (자망어구용 코팅발돌의 개발)

  • An, Young-Il
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.22 no.4
    • /
    • pp.501-507
    • /
    • 2010
  • The ceramic contained paint was made to replace the lead sinker for gill-net with coated lead sinker. The ceramic contained paints were coated in various conditions on the lead sinker with 19g of weight and the optimal coating condition was studied. The adaptability of the coated lead sinker was checked through the anti durability test and fishing operation with gill-net. The case of "Main material 70 wt% + Urethane thinner 30 wt% (Main material 700 $m{\ell}$ + Thinner 300 $m{\ell}$)" showed the best in the coating characteristics depending on the combination ratio of the ceramic paint contained. The coated lead sinker dried at $100^{\circ}C$ inside oven was superior to the drying in the room temperature in its surface glossiness and anti durability and faster drying time than the one dried in normal temperature. The quadruple layers of coating on lead sinker with 4 times of dipping and drying application showed the super anti durability in the coating characteristics depending on the frequency of dipping. When press is applied to the coated lead sinker, the coated layer is not detached from the sinker. In addition, the coated lead sinker was not damaged or peeled at the fishing operation about 2 months in various depths within 50m and by the materials at the bottom (sand, stone and gravel stone) and it was in good condition.

A Study on the friction and Wear Characteristics of C-N Coated SCM415 Steel (C-N코팅 SCM415강의 마찰$\cdot$마모 특성에 관한 연구)

  • Lyu Sung-ki;Lu Long;Jin Tai-yu;Lian Zhe-Man;Cao Xing-Jin;Cho Sung-Min
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.18-23
    • /
    • 2005
  • This study deals with the friction and wear characteristics of C-N coated SCM415 steel. The PSII(plasma source ion implantation) apparatus was built and a SCM415 test piece with steel substrate was treated with carbon nitrogen by this apparatus. The composition and structure of the surface layer were analyzed and compared with that of PVD(physical vapor decomposition) coated TiN layer. It was found that both of friction coefficient of C-N coating and TiN coating decreased with increasing load, however, C-N coating showed relatively lower faction coefficient than that of TiN coating. The micro-vickers hardness of C-N film is 3200 Hv, which is $32\~43\%$ higher than that of TiN film. The critical load of C-N film is 52N, which is $25\%$ higher than that of TiN film. The hardness of C-N film fabricated by Plasma ion implantation is $61\~70\%$ higher than that of base material, and faction coefficient is $14\~50\%$ lower than that of base material. It is also interesting to note that the friction was changed from adhesive wear mode to light oxidizing wear mode.

Interaction study of molten uranium with multilayer SiC/Y2O3 and Mo/Y2O3 coated graphite

  • S.K. Sharma;M.T. Saify;Sanjib Majumdar;Palash K. Mollick
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1855-1862
    • /
    • 2023
  • Graphite crucibles are used for melting uranium and its alloys in VIM furnace. Various coating materials namely Al2O3, ZrO2, MgO etc. are applied on the inner surface of the crucibles using paint brush or thermal spray technique to mitigate U-C interaction. These leads to significant amount of carbon pick-up in uranium. In this study, the attempts are made to develop multilayer coatings comprising of SiC/Y2O3 and Mo/Y2O3 on graphite to study the feasibility of minimizing U-C interaction. The parameters are optimized to prepare SiC coating of about 70㎛ thickness using CVD technique on graphite coupons and subsequently Y2O3 coating of about 250㎛ thickness using plasma spray technique. Molybdenum and Y2O3 layers were deposited using plasma spray technique with 70㎛ and 250㎛ thickness, respectively. Interaction studies of the coated graphite with molten uranium at 1450℃ for 20 min revealed that Y2O3 coating with SiC interlayer provides physical barrier for uranium-graphite interaction, however, this led to the physical separation of coating layer. Y2O3 coating with Mo interlayer provided superior barrier effect showing no degradation and the coatings remained intact after interaction tests. Therefore, the Mo/Y2O3 coating was found to be a promising solution for minimizing carbon pick-up during uranium/uranium alloy melting.

A Study on the Cleaning of AISI 304 Stainless Steel Surface for Gold Plating (금도금을 위한 AISI 304 스테인레스강 표면의 세정)

  • 한범석;장현구
    • Journal of Surface Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.23-33
    • /
    • 1995
  • AISI 304 stainless steel has high resistance to corrosion due to the presence of a self-healing chromium oxide film on the surface, which also accounts for the difficulty in plating. Surface cleaning of this alloy is of fundamental importance in gold plating since its effectiveness puts an upper limit on the quality of the final coating. The cleaning of AISI 304 stainless steel was investigated with elimination of artificial passive oxide film and degreasing of remaining buffing wax as stearic acid. The familiar cleaning methods i.e. ultrasonic cleaning, electro-cleaning and activation treatment were fabricated in this study. Activation treatment showed best cleaning efficiency for elimination of passive oxide film among these methods, which was also confirmed by AES (Auger electron spectrometer) analysis. However, the best condition of cleaning was obtained by combining these methods. Electrocleaning time, for degreasing the stearic acid layer, was decreased with increasing amount of added KCN.

  • PDF

The Study on the Surface Structure of Domestic CTP Thermal Plate (국산 CTP Thermal Plate의 표면 구조에 관한 연구)

  • Ha, Young-Baeck;Oh, Sung-Sang;Kang, Hyoung-Gon;Yoo, Keun-Ryong;Lee, Jae-Su
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.2
    • /
    • pp.59-70
    • /
    • 2011
  • Even though we could not count the total amount of plates in Korean printing industry per year, we would suppose the total amount of plates about $20,000km^2$ to $22,000km^2$ per year through our printing experience. On the standard of the end of 2010, it would be the market share of plates are that CTP plate is $9,000km^2$, CTcP plate is$4,000km^2$ and PS plate is $9,000km^2$, such as total amount of plates are $22,000km^2$. When there was no installed CTP setter in Korea, the domestic plate would be over 60% market share of plate in Korean printing industry. But now it would be less than 25% market share of plate. It is necessary to develop domestic CTP thermal plate from now because we have to keep the market share of domestic plate. On the study of the surface structure of substrate, roughness, anodized layer amount and coating amount between domestic CTP thermal plate and foreign CTP thermal plate, it would be the basic to develop domestic CTP thermal plate.

Improved Corrosion and Abrasion Resistance of Organic-Inorganic Composite Coated Electro-galvanized Steels for Digital TV Panels

  • Jo, Du-Hwan;Noh, Sang-Geol;Park, Jong-Tae;Kang, Choon-Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.213-217
    • /
    • 2015
  • Recently, household electronic industries require environmentally-friendly and highly functional steels in order to enhance the quality of human life. Customers especially require both excellent corrosion and abrasion resistant anti-fingerprint steels for digital TV panels. Thus POSCO has developed new functional electro-galvanized steels, which have double coated layers with organic-inorganic composites on the zinc surface of the steel for usage as the bottom chassis panel of TVs. The inorganic solution for the bottom layer consists of inorganic phosphate, magnesium, and zirconium compounds with a small amount of epoxy binder, and affords both improved adhesion properties by chemical conversion reactions and corrosion resistance due to a self-healing effect. The composite solution for the top layer was prepared by fine dispersion of organic-inorganic ingredients that consist of a urethane modified polyacrylate polymer, hardener, silica sol and a titanium complex inhibitor in aqueous media. Both composite solutions were coated on the steel surface by using a roll coater and then cured through an induction furnace in the electro-galvanizing line. New anti-fingerprint steel was evaluated for quality performance through such procedures as the salt spray test for corrosion resistance, tribological test for abrasion resistance, and conductivity test for surface electric conductance regarding to both types of polymer resin and coating weight of composite solution. New composite coated anti-fingerprint steels afford both better corrosion resistance and abrasion properties compared to conventional anti-fingerprint steel that mainly consists of acrylate polymers. Detailed discussions of both composite solutions and experimental results suggest that urethane modifications of acrylate polymers of composite solutions play a key role in enhanced quality performances.

Facile Modification of Surface of Silica Particles with Organosilanepolyol and Their Characterization

  • Lee, Joongseok;Han, Joon Soo;Yoo, Bok Ryul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3805-3810
    • /
    • 2013
  • The surface modification of silica particles (SPs) was systemically conducted by the treatment of 0.1-10 wt % phenylsilanetriol (PST) on the basis of SPs used through two step processes: 1) the PST coating of SPs via evaporation under reduced pressure and 2) their thermal condensation leading to Si-O-Si bond formation via heating at $130^{\circ}C$. The evaluation of the modified SPs was conducted by the simple floating test on water and the measurement of the contact angle (CA) of water droplet on the 2-dimensional layer of modified SPs on slide glass. When PST was used about 2 wt % or above on the basis of SPs (about average size: 50 nm) used, the modified SPs were fully floated on the water and all dispersed into upper organic solvent layer after a shaking with the mixture of the water and benzene, indicating that the modified SPs have hydrophobic properties. The modified SPs were characterized by $^{29}Si$ MAS NMR and physicochemical properties including SEM, TEM, BET, adsorption/desorption isotherms, etc. were measured and compared each other in details. This research demonstrates that the organosilanetriol is a good modifier applicable for the surface modification of inorganic oxide particles using a low amount of modifier on the basis of oxide particles used.

ELECTRICAL CHARACTERISTICS OF PENTACENE THIN FILM TRANSISTORS WITH STACKED AND SURFACE-TREATED GATE INSULATORS (러빙 처리된 표면의 적층 절연막을 가지는 Pentacene TFT의 전기적 특성)

  • Kang, Chang-Heon;Lee, Jong-Hyuk;Park, Jae-Hoon;Choi, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1546-1548
    • /
    • 2002
  • In this paper, the electrical characteristics of pentacene thin film transistors(TFTs) with stacked and surface-treated gate insulators have been investigated. The semiconductor layer of pentacene was thermally evaporated onto the stacked gate insulators. For the gate insulating materials. PVP(PolyvinylPhenol) and polystyrene were spin-coated with two different stacking orders, PVP-polystyrene and polystyrene-PVP. Rapid solvent evaporation during the spin-coating processes of these insulating layers produces non-equilibrium phase morphologies accompanied by surface undulations on gate insulator interfaces. This non-equilibrium phase morphology affects the growth mode of the subsequent pentacene layer. Therefore, in order to smoothen the gate dielectric surfaces, gate dielectric surfaces were rubbed laterally along the direction from the drain to the source TFTs with with stacked and surface-treated gate insulators have provided improved operational characteristics.

  • PDF

Ultrastructure of the Epiphytic Sooty Mold Capnodium on Walnut Leaves

  • Kim, Ki Woo
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.14-14
    • /
    • 2015
  • Cellular aspects of sooty mold on walnut leaves were investigated by using light and electron microscopy. A black coating developed on the adaxial leaf surface of a walnut tree. No infestations were found on the abaxial leaf surface with peltate glandular trichomes. Light microscopy showed that fungal complexes from the leaf surface were composed of brown conidia and hyphae. Conidia, with longitudinal and transverse septa, were variable in length ranging from 10 to $30{\mu}m$, and commonly found in clusters, forming microsclerotia. Neither epidermal penetration nor hyphal entrance to host tissues was observed. Based on their morphological characteristics, the fungal complexes were assumed to be Capnodium species. An electron-dense melanized layer was present on the cell wall of multi-celled conidia. Concentric bodies in the fungal cytoplasm had an electron-translucent core surrounded by an electron-dense margin with a fibrillar sheath. Chloroplasts without starch granules in the palisade mesophyll cells of sooty leaves had electron-dense stromata and swollen plastoglobuli. These results suggest that the epiphytic growth of fungal complexes can be attributed to the melanized layer and concentric bodies against a water-deficient environment on the leaf surface. Ultrastructural characteristics of the sooty leaves indicate typical features of dark-adapted and non-photosynthetic shade leaves.

  • PDF

Influence of Fluorine-Doped Tin Oxide Coated on NiCrAl Alloy Foam Using Ultrasonic Spray Pyrolysis Deposition (초음파 분무 열분해법을 이용한 NiCrAl 합금 폼에 코팅된 불소 도핑된 주석 산화물의 영향)

  • Shin, Dong-Yo;Bae, Ju-Won;Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.392-397
    • /
    • 2017
  • Fluorine-doped tin oxide (FTO) coated NiCrAl alloy foam is fabricated using ultrasonic spray pyrolysis deposition (USPD). To confirm the influence of the FTO layer on the NiCrAl alloy foam, we investigated the structural, chemical, and morphological properties and chemical resistance by using USPD to adjust the FTO coating time (12, 18, and 24 min). As a result, when an FTO layer was coated for 24 min on NiCrAl alloy foam, it was found to have an enhanced chemical resistance compared to those of the other samples. This improvement in the chemical resistance of using USPD NiAlCr alloy foam can be the result of the existence of an FTO layer, which can act as a protection layer between the NiAlCr alloy foam and the electrolyte and also the result of the increased thickness of the FTO layer, which enhances the diffusion length of the metal ion.