• Title/Summary/Keyword: Surface classification

Search Result 809, Processing Time 0.027 seconds

Artificial Neural Network based Motion Classification Algorithm using Surface Electromyogram (표면 근전도를 이용한 Artificial Neural Network 기반의 동작 분류 알고리즘)

  • Jeong, E.C.;Kim, S.J.;Song, Y.R.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • In this paper, Artificial Neural Network(ANN) based motion classification algorithm is proposed to classify wrist motions using surface electromyograms(sEMG). surface EMGs are obtained from two electrodes placed on the flexor carpi ulnaris muscle and extensor carpi ulnaris muscle of 26 subjects under no strain condition during wrist motions and used to recognize wrist motions such as up, down, left, right, and rest. Feature is extracted from obtained EMG signals in time domain for fast processing and used to classify wrist motions using ANN. DAMV, DASDV, MAV, and RMS were used as features and accuracies of motion classification based on ANN were 98.03% for DAMV, 97.97% for DASDV, 96.95% for MAV, 96.82% for RMS.

  • PDF

The Innovative Application of Surface Texture in Fashion and Textile Design

  • Gong, Lin;Shin, Jooyoung
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.336-346
    • /
    • 2013
  • This study focuses on 'texture' as one of the most important fashion and textile design elements; in addition, it proposes various applications of it. Surface texture is indispensable in fashion and textile design that also factors heavily into innovative creations. Along with technological advances in the fashion industry, surface texture has derived many new and attractive features that provide more opportunities for designers to show various design concepts. Rather than the surface quality of fabrics, surface texture in fashion design creates its identity through a manipulation of materials- an application that tends to be primarily for visual effects without being restricted to decorative purposes. The status and significance of surface texture in various creative fields is explored and the evolution of surface texture is traced by analyzing a number of fashion design cases with representative surface textures. The latest feature of surface texture in fashion and textile design is identified to establish a new classification of surface texture with five groups and technical suggestions. This study provides a theoretical basis for this field of study and a new framework that can be employed in the development of surface textures that use innovative techniques as well as the future application of newly-developed textures.

Impervious Surface Estimation of Jungnangcheon Basin Using Satellite Remote Sensing and Classification and Regression Tree (위성원격탐사와 분류 및 회귀트리를 이용한 중랑천 유역의 불투수층 추정)

  • Kim, Sooyoung;Heo, Jun-Haeng;Heo, Joon;Kim, SungHoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.915-922
    • /
    • 2008
  • Impervious surface is an important index for the estimation of urbanization and the assessment of environmental change. In addition, impervious surface influences on short-term rainfall-runoff model during rainy season in hydrology. Recently, the necessity of impervious surface estimation is increased because the effect of impervious surface is increased by rapid urbanization. In this study, impervious surface estimation is performed by using remote sensing image such as Landsat-7 ETM+image with $30m{\times}30m$ spatial resolution and satellite image with $1m{\times}1m$ spatial resolution based on Jungnangcheon basin. A tasseled cap transformation and NDVI(normalized difference vegetation index) transformation are applied to Landsat-7 ETM+ image to collect various predict variables. Moreover, the training data sets are collected by overlaying between Landsat-7 ETM+ image and satellite image, and CART(classification and regression tree) is applied to the training data sets. As a result, impervious surface prediction model is consisted and the impervious surface map is generated for Jungnangcheon basin.

Cone Surface Classification and Threshold Value Selection for Description of Complex Objects (복잡한 물체의 기술을 위한 원뿔 표면의 분류 및 임계치 선정)

  • Cho, Dong-Uk;Kim, Ji-Yeong;Bae, Young-Lae;Ko, Il-Seok
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.297-302
    • /
    • 2004
  • In this paper, the 3-D shape description for the objects with the cone ridge and valley surfaces, and the corresponding threshold value selection for surface classification are considered. The existing method based on the mean and Gaussian curvatures(H and K) of differential geometries cannot properly describe cone primitives, which are some of the most common objects in the real world. Also the existing method for surface classification based on the sign values of H and K has Problems in practical applications. For this, cone surface shapes are classified cone ridges and cone valleys are derived from surfaces using the fact that H values are constant case of cylinder surfaces and variable for cone surfaces, respectively. Also threshold value selection for surface classification from a statistical point of view is proposed. The effectiveness of the proposed methods are verified through experiments.

Surface Sediments Classification in Tidal Flats using Multivariate Kriging and KOMPSAT-2 Imagery (다변량 크리깅과 KOMPSAT-2 영상을 이용한 간석지 표층 퇴적물 분류)

  • LEE, Sang-Won;PARK, No-Wook;JANG, Dong-Ho;YOO, Hee Young;LIM, Hyosuk
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.37-49
    • /
    • 2012
  • The objective of this paper is to propose a methodology for surface sediments classification in tidal flats that can combine ground survey data with high-resolution remote sensing data by multivariate kriging. Unlike conventional methodologies that have classified remote sensing data by using pre-classified sediment components, a new classification methodology presented in this paper first generates sediment component fraction maps and then classifies the sediments on a final stage. For generating sediment component fractions, regression kriging, as one of multivariate kriging algorithms, is applied to integrate ground survey data and remote sensing data. First, trend components of sand, silt, and clay are derived through regression analysis of ground survey data and spectral information from remote sensing data. Then, residuals at sample locations are computed and interpolated to generate residual components in the study area. Finally, the sediment component fractions are computed by adding the residuals to the trend components and are classified on a final stage. A case study at the Baramarae tidal flats with KOMPSAT-2 imagery is carried out to evaluate the classification capability of the proposed classification methodology. Through the case study, the proposed methodology showed the best classification accuracy, compared with the conventional classification methodologies. Especially, much improvement of classification accuracy for fine-grained sediments were also obtained. Therefore, it is expected that the presented classification methodology would be an effective one for surface sediments classification in tidal flats.

GENERATION OF AN IMPERVIOUS MAP BY APPLYING TASSELED-CAP ENHANCEMENT USING KOMPSAT-2 IMAGE

  • Koh, Chang-Hwan;Ha, Sung-Ryong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.378-381
    • /
    • 2008
  • The regulating and relaxing targets in the Land Use Regulation and Total Maximum Daily Loads are influenced by Land cover information. For the providing more accurate land information, this study attempted to generate an impervious surface map using KOMPSAT-2 image which a Korea manufactured high resolution satellite image. The classification progress of this study carried out by tasseled-cap spectral enhancement through each class extraction technique neither existing classification method. KOMPSAT-2 image of this study is enhanced by Soil Brightness Index(SBI), Green vegetation Index(GVI), None-Such wetness Index(NWI). Then ranges of extracted each index in enhanced image are determined. And then, Confidence Interval of classes was determined through the calculating Non-exceedance Probability. Spectral distributions of each class are changed according to changing of Control coefficient(${\alpha}$) at the calculated Non-exceedance Probability. Previously, Land cover classification map was generated based on established ranges of classes, and then, pervious and impervious surface was reclassified. Finally, impervious ratio of reclassified impervious surface map was calculated with blocks in the study area.

  • PDF

Standard Criterion of VUS for ROC Surface (ROC 곡면에서 VUS의 판단기준)

  • Hong, C.S.;Jung, E.S.;Jung, D.G.
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.977-985
    • /
    • 2013
  • Many situations are classified into more than two categories in real world. In this work, we consider ROC surface and VUS, which are graphical representation methods for classification models with three categories. The standard criteria of AUC for the probability of default based on Basel II is extended to the VUS for ROC surface; therefore, the standardized criteria of VUS for the classification model is proposed. The ranges of AUC, K-S and mean difference statistics corresponding to VUS values for each class of the standard criteria are obtained. The standard criteria of VUS for ROC surface can be established by exploring the relationships of these statistics.

Investigation of Degradative Signals on Outdoor Solid Insulators Using Continuous Wavelet Transform

  • Uzunoglu, Cengiz Polat
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.683-689
    • /
    • 2016
  • Most outdoor solid insulators may suffer from surface degradations due to non-stationary currents that flow on the insulator surface. These currents may be classified as leakage, discharge and tracking currents due to their disturbing potencies respectively. The magnitude of these currents depends on the degree of the contamination of surface. The leakage signals are followed by discharge signals and tracking signals which are capable of forming carbonized tracking paths on the surface between high voltage and earth contacts (surface tracking). Surface tracking is one of the most breakdown mechanisms observed on the solid insulators, especially polymers which may cause severely reduced lifetime. In this study the degradations observed on polyester resin based insulators are investigated according to the IEC 587 Inclined Plane Test Standard. The signals are monitored and recorded during tests until surface tracking initiated. In order to prevent total breakdown of an insulator, early detection of tracking signals is vital. Continuous Wavelet Transform (CWT) is proposed for classification of signals and their energy levels observed on the surface. The application of CWT for processing and classification of the surface signals which are prone to display high frequency oscillations can facilitate real time monitoring of the system for diagnosis.

Solder Joint Inspection Using a Neural Network and Fuzzy Rule-Based Classification Method (신경회로망과 퍼지 규칙을 이용한 인쇄회로 기판상의 납땜 형상검사)

  • Ko, Kuk-Won;Cho, Hyung-Suck;Kim, Jong-Hyeong;Kim, Sung-Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.710-718
    • /
    • 2000
  • In this paper we described an approach to automation of visual inspection of solder joint defects of SMC(Surface Mounted Components) on PCBs(Printed Circuit Board) by using neural network and fuzzy rule-based classification method. Inherently the surface of the solder joints is curved tiny and specular reflective it induces difficulty of taking good image of the solder joints. And the shape of the solder joints tends to greatly vary with the soldering condition and the shapes are not identical to each other even though the solder joints belong to a set of the same soldering quality. This problem makes it difficult to classify the solder joints according to their qualities. Neural network and fuzzy rule-based classification method is proposed to effi-ciently make human-like classification criteria of the solder joint shapes. The performance of the proposed approach is tested on numerous samples of commercial computer PCB boards and compared with the results of the human inspector performance and the conventional Kohonen network.

  • PDF

Optimum Design of Ship Design System Using Neural Network Method in Initial Design of Hull Plate

  • Kim, Soo-Young;Moon, Byung-Young;Kim, Duk-Eun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1923-1931
    • /
    • 2004
  • Manufacturing of complex surface plates in stern and stem is a major factor in cost of a preliminary ship design by computing process. If these hull plate parts are effectively classified, it helps to compute the processing cost and find the way to cut-down the processing cost. This paper presents a new method to classify surface plates effectively in the preliminary ship design using neural network. A neural-network-based ship hull plate classification program was developed and tested for the automatic classification of ship design. The input variables are regarded as Gaussian curvature distributions on the plate. Various applicable rules of network topology are applied in the ship design. In automation of hull plate classification, two different numbers of input variables are used. By observing the results of the proposed method, the effectiveness of the proposed method is discussed. As a result, high prediction rate was achieved in the ship design. Accordingly, to the initial design stage, the ship hull plate classification program can be used to predict the ship production cost. And the proposed method will contribute to reduce the production cost of ship.