• 제목/요약/키워드: Surface chemical reaction

검색결과 1,660건 처리시간 0.027초

Reactions of Gas-Phase Atomic Hydrogen with Chemisorbed Hydrogen on a Graphite Surface

  • Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권4호
    • /
    • pp.635-646
    • /
    • 2007
  • The reaction of gas-phase hydrogen atoms H with H atoms chemisorbed on a graphite surface has been studied by the classical dynamics. The graphite surface is composed of the surface and 10 inner layers at various gas and surface temperatures (Tg, Ts). Three chains in the surface layer and 13 chains through the inner layers are considered to surround the adatom site. Four reaction pathways are found: H2 formation, H-H exchange, H desorption, and H adsorption. At (1500 K, 300 K), the probabilities of H2 formation and H desorption are 0.28 and 0.24, respectively, whereas those of the other two pathways are in the order of 10-2. Half the reaction energy deposits in the vibrational motion of H2, thus leading to a highly excited state. The majority of the H2 formation results from the chemisorption-type H(g)-surface interaction. Vibrational excitation is found to be strong for H2 formed on a cold surface (~10 K), exhibiting a pronounced vibrational population inversion. Over the temperature range (10-100 K, 10 K), the probabilities of H2 formation and H-H exchange vary from 0 to ~0.1, but the other two probabilities are in the order of 10-3.

3D Generalized Langevin Equation (GLE) Approach to Gas-Surface Energy Transfer : Model H + H → $H_2/Si(100)-(2*1)$

  • ;박승철
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권11호
    • /
    • pp.1095-1100
    • /
    • 2000
  • we have proposed a three-dimensional GLE approach to gas-surface reactive scattering, model H + H $${\rightarrow}$H_2/Si(100)-(2$ ${\times}$1) system, and the implementation of 3D GLE method on the hydrogen on silicon surface has been presented. The formalism and algori thm of the 3D GLE are worked properly in the reactive scattering system. The calculated normal mode frequencies of surface vibrations were almost identical to previous harmonic slab calculations. The reaction probabilities were calculated for two energies. The calculations show that a very large amount of energy is transferred in surface in low energy scattering. Three different types of reaction mechanisms has been observed, which can not be shown in flat and rigid surface models. Further work on the reaction mechanisms and calculations of the vibrational and rotation distributions of products is in progress. The results will be reported elsewhere soon.

Adsorption and Dissociation Reaction of Carbon Dioxide on Pt(111) and Fe(111) Surface: MO-study

  • 조상준;박동호;허도성
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권8호
    • /
    • pp.779-784
    • /
    • 2000
  • Comparing the adsorption properties and dissociation on a Pt(111) iththat ona Fe(111) surface, we have con-sidered seven coordination modes of the adsorbed binding site: $di-${\sigma}$${\Delta}$\mu\pi/\mu$, 1-fbld,2-fold, and 3-fbld sites. On the Pt(111) surface, t he adsorbed binding site of carbon dioxide was strongestat the1-fold site and weakest at the $\pi/\mu-site.$ The adsorbed binding site on the Fe(111) surface was strongest at the di-бsite and weakest at the 3-fold site. We have found that the binding energy at each site that excepted 3-fold on the Fe(111) surface was stronger than the binding energy on the Pt(111) surface and that chemisorbed $CO_2bends$ because of metal mixing with $2\piu${\rightarrow}$6a_1CO_2orbital.$, The dissociation reaction occured in two steps, with an intermediate com-plex composed of atomic oxygen and ${\pi}bonding$ CO forming. The OCO angles of reaction intermediate com-plex structure for the dissociation reaction $were115^{\circ}Con$ the Pt(111), and $117^{\circ}C$ on the Fe(111) surface. We have found that the $CO_2dissociation$ rea11) surface proceeds easily,with an activationenergy about 0.2 eV lower than that on the Pt(111) surface.

Solvent Free N-Heterocyclization of Primary Amines to N-Substituted Azacyclopentanes Using Hydrotalcite as Solid Base Catalyst

  • Dixit, Manish;Mishra, Manish;Joshi, P.A.;Shah, D.O.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1457-1464
    • /
    • 2012
  • An ecofriendly catalytic route for selective synthesis of $N$-substituted azacyclopentanes, nitrogen-containing heterocyclic intermediates for many bioactive compounds, was established by carrying out $N$-heterocyclization (di $N$-alkylation) of primary amines with 1,4-dichloro butane (as dialkylating agent) using catalytic amount of hydrotalcite as solid base catalyst. The hydrotalcite was found to be efficient solid base catalyst for di $N$-alkylation of different primary amines (aniline, benzyl amine, cyclohexyl amine and n-butyl amine) giving 82 to 96% conversion (at optimized reaction condition) of 1,4-dichloro butane and > 99% selectivity of respective $N$-substituted azacyclopentanes within 30 min. under solvent free condition. The reaction parameters significantly influence the conversion of 1,4-dichloro butane to $N$-substituted azacyclopentanes. The nature of substituent present on amino group affects the reactivity of amine substrates for di $N$-alkylation reaction with 1,4-dichloro butane. The 1,4-dichloro butane was found to be highly reactive alkylating agent for di $N$-alkylation of amines as compared to 1,4-dihydroxy butane. The reusability of the catalyst and its chemical stability in the reaction was demonstrated.

CO2 흡착 충전제 제조를 위한 microcrystalline cellulose (MCC) 입자 표면개질연구 (Surface Modification of Microcrystalline Cellulose (MCC) Filler for CO2 Capture)

  • 양여경;박성환;김한나;황기섭;하기룡
    • Korean Chemical Engineering Research
    • /
    • 제55권1호
    • /
    • pp.60-67
    • /
    • 2017
  • 본 연구에서는 생분해성인 microcrystalline cellulose (MCC)를 표면 개질하여 음식포장재로 사용하는 polyethylene (PE) 복합체의 충전제로 사용하기 위한 사전 연구를 수행하였다. 1 분자 당 1 차 아미노기 1개와 2차 아미노기 2개씩을 가지는 실란커플링제인(3-trimethoxysilylpropyl)diethylenetriamine (TPDT)를 사용하여 MCC 표면에 이산화탄소 흡착 기능이 있는 아미노기를 도입하였다. TPDT 도입량, 팽윤시간, 반응온도 및 반응시간과 같은 다양한 반응 조건들을 변화시켜 각각의 반응조건의 변화가 MCC 표면 개질 정도에 미치는 영향을 연구하였다. MCC 표면에 접목된 TPDT의 양 및 화학결합생성을 Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) 및 고체 상태 $^{29}Si$ nuclear magnetic resonance (NMR)법을 사용하여 분석하였다. 반응시간, 반응온도 및 TPDT 도입량이 증가할수록 MCC 표면에 접목되는 TPDT 양이 증가함을 확인하였다.

Fabrication of Nearly Monodispersed Silica Nanoparticles by Using Poly(1-vinyl-2-pyrrolidinone) and Their Application to the Preparation of Nanocomposites

  • Chung, You-Sun;Jeon, Mi-Young;Kim, Chang-Keun
    • Macromolecular Research
    • /
    • 제17권1호
    • /
    • pp.37-43
    • /
    • 2009
  • To fabricate dental nanocomposites containing finely dispersed silica nanoparticles, nearly monodispersed silica nanoparticles smaller than 25 nm were synthesized without forming any aggregates via a modified sol-gel process. Since silica nanoparticles synthesized by the Stober method formed aggregates when the particle size is smaller than 25 nm, the synthetic method was modified by changing the reaction temperature and adding poly(1-vinyl-2-pyrrolidinone) (PVP) to the reaction mixture. The size of the formed silica nanoparticles was reduced by increasing the reaction temperature or adding PVP. Furthermore, the formation of aggregates with primary silica nanoparticles smaller than 25 nm was prevented by increasing the amount of PVP added to the reaction mixture. To enhance the dispersion of the silica particles in an organic matrix, the synthesized silica nanoparticles were treated with 3-methacryloxypropyltrimethoxysilane ($\gamma$-MPS). A dental nanocomposite containing finely dispersed silica nanoparticles could be produced by using the surface-treated silica nanoparticles.

Analytical Solutions of Unsteady Reaction-Diffusion Equation with Time-Dependent Boundary Conditions for Porous Particles

  • Cho, Young-Sang
    • Korean Chemical Engineering Research
    • /
    • 제57권5호
    • /
    • pp.652-665
    • /
    • 2019
  • Analytical solutions of the reactant concentration inside porous spherical catalytic particles were obtained from unsteady reaction-diffusion equation by applying eigenfunction expansion method. Various surface concentrations as exponentially decaying or oscillating function were considered as boundary conditions to solve the unsteady partial differential equation as a function of radial distance and time. Dirac delta function was also used for the instantaneous injection of the reactant as the surface boundary condition to calculate average reactant concentration inside the particles as a function of time by Laplace transform. Besides spherical morphology, other geometries of particles, such as cylinder or slab, were considered to obtain the solution of the reaction-diffusion equation, and the results were compared with the solution in spherical coordinate. The concentration inside the particles based on calculation was compared with the bulk concentration of the reactant molecules measured by photocatalytic decomposition as a function of time.

Effects of pH on Preparation of Au-Coated $TiO_2$ Nanoparticles by Deposition-Precipitation Method

  • Nguyen, Dung The;Kim, Dong-Joo;Kim, Kyo-Seon
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.150-150
    • /
    • 2009
  • We prepared the Au-coated $TiO_2$ (Au/$TiO_2$) nanoparticles by deposition-precipitation (DP) method with and without bases (urea or NaOH) and investigated the effects of pH on the preparation of Au/$TiO_2$ nanoparticles for various kinds of bases. For the DP method without bases, the Au nanoparticles in the diameter of about 50 nm were generated in the solution by the reduction reaction with trisodium citrate and they did not deposit on the surface of $TiO_2$. For the DP method with bases, Au precursors deposited on the surface of $TiO_2$ and then reduced to the Au nanoparticles in the diameter of 4-5 nm on the surface of $TiO_2$ by the reaction with trisodium citrate.

  • PDF

Magnetic Properties of Activated Quartz Nanocomposite

  • N.N., Mofa;T.A., Ketegenov;Z.A., Mansurov;Soh, Hyun-Jun;Soh, Dea-Wha
    • 동굴
    • /
    • 제78호
    • /
    • pp.9-15
    • /
    • 2007
  • The materials showing high structure dispersion with functional properties were developed on the quartz base and those were obtained by mechano-chemical reaction technology. Depending on the processing conditions and subsequent applications the materials produced by mechano-chemical reaction show concurrently magnetic, dielectric and electrical properties. The obtained magnetic-electrical powders classified by aggregate complex of their features as segnetomagnetics, containing a dielectric material as a carrying nucleus, particularly the quartz on that surface one or more layers of different compounds were synthesized having thickness up to 1050nm showing magnetic, electrical properties and others. The similarity of the structure of surface layers of quartz particles subjected to mechano-chemical processing and nano-structure cluspol (clusters in a polymer matrics) material was alsoconfirmed by the fact that the characteristics of ferromagnetic quartz of insulating nano-composite powder were changed with time, after its preparing process was completed.

Conjugation of mono-sulfobetaine to alkyne-PPX films via click reaction to reduce cell adhesion

  • Chien, Hsiu-Wen;Keng, Ming-Chun;Chen, Hsien-Yeh;Huang, Sheng-Tung;Tsai, Wei-Bor
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제3권1호
    • /
    • pp.59-69
    • /
    • 2016
  • A surface resisting protein adsorption and cell adhesion is highly desirable for many biomedical applications such as diagnostic devices, biosensors and blood-contacting devices. In this study, a surface conjugated with sulfobetaine molecules was fabricated via the click reaction for the anti-fouling purpose. An alkyne-containing substrate (Alkyne-PPX) was generated by chemical vapor deposition of 4-ethynyl-[2,2]paracyclophane. Azide-ended mono-sulfobetaine molecules were synthesized and then conjugated on Alkyne-PPX via the click reaction. The protein adsorption from 10% serum was reduced by 57%, while the attachment of L929 cells was reduced by 83% onto the sulfobetaine-PPX surface compared to the protein adsorption and cell adhesion on Alkyne-PPX. In conclusion, we demonstrate that conjugation of mono-sulfobetaine molecules via the click chemistry is an effective way for reduction of non-specific protein adsorption and cell attachment.