• Title/Summary/Keyword: Surface and Silent Discharge

Search Result 26, Processing Time 0.026 seconds

Ozone Generation and NO Gas Removal Characteristics a Hybrid Discharge Type Ozonizer (복합방전형 오존발생기의 오존생성 및 NO 가스 제거특성)

  • Song, Hyun-Jig;Lee, Sang-Seock;Shin, Yong-Chul;Kim, Min-Huei;Park, Chan-Gyu;Lee, Kwang-Sik;Im, Chang-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.278-280
    • /
    • 2006
  • A hybrid discharge type ozonizer, which is superposed silent and surface discharges, has been designed and manufactured to apply for Nitrogen Oxides(NO) gas removal. The ozonizer consists of three electrodes, and is classified three types of ozonizer by changing applied voltage. Investigation was carried out variance with the flow rate of supplied oxygen gas, discharge power and the sorts of superposed discharge type ozonizer. Moreover, $NO(1200[ppm])/N_2$ gas removal investigation was also conducted to apply for environment improvement field. Two kinds of NO gas removal investigations were conducted. It distinguishes the investigations into NO gas reaction method. According to these studies, maximum removal rate of 100[%] in NO gas was obtained, and 8334[ppm] and 3249[mg/h] of maximum ozone concentration and generation were also obtained respectively.

  • PDF

Effect of the Change in Electrode Construction for the Improvement of Ozone Characteristic of a Superposed Discharge Type Ozonizer

  • Rahman, Fayzur
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.17-22
    • /
    • 1999
  • In this paper a new discharge type ozonizer comprising the superpose operation of silent and surface discharge is presented. The ozonizer consists of two concentric glass tubes with three type of discharge electrodes : the external electrode(EE), the internal electrode(IE) and the central electrode(CE). By varying the structure of IE and materials of CE, we analyzed the characteristics of ozone related different parameters including $O_{3con}$, $O_{3g}$, and $O_{3Y}$. Using Cu made CE it was found the O3con is higher with Cu tape than that with Cu coil wound IE. At Q = 1[l/ min] the values of O3con were found as 3000[ppm] with Cu tape wound IE and 1898[ppm] with Cu coil wound IE. Then using SUS wire made CE with Cu tape wound IE at Q = 1[ι/ min] the maximum value of O3con was found as 5632[ppm]. It was observed that both $O_{3con}$ and $O_{3y}$ are higher with SUS made CE than that with Cu made CE. The maximum values of $O_{3Y}$ were found as 79[g/kWh] with Cu made CE and 170[g/kWh] with SUS wire made CE.

  • PDF

A Study on the Characteristics of the High Concentration Ozone Generator for the Semiconductor Wafer Cleaning with the Ozone Dissolved De-ionized Water (반도체 웨이퍼의 오존 수(水) 세정을 위한 고농도 오존발생장치 특성 연구)

  • 손영수;함상용;문세호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.579-585
    • /
    • 2003
  • Recently the utilization of the ozone dissolved de-ionized water(DI-O3 water) in semiconductor wet cleaning process to replace the conventional RCA methods has been studied. In this paper, we propose the water-electrode type ozone generator which has the ozone gas characteristics of the high concentration and high purity to produce the high concentration DI-O3 water for the silicon wafer surface cleaning process. The ozone generator has the dual dielectric tube structure of silent discharge type and the water is both used to electrode and cooling water. We investigate the performance of the proposed ozone generator which has the design goal of the concentration of 7[wt%] and ozone generation quantity of 6[g/hr] at flow rate of 1[$\ell$/min). The experiment results show that the water electrode type ozone generator has the characteristics of 8.48[wt%] of concentration, 8.08[g/hr] of generation quantity and 76.2[g/kWh] of yield and it's possible to use the proposed ozone generator for the DI-O3 water cleaning process of silicon wafer surface.

Development of the Skin Treatment Unit using Low Temperature Plasma (저온 플라즈마를 이용한 피부치료기 개발에 관한 연구)

  • Song, Kwang-Hyun;Ko, Yon-Seok;Lee, Woo-Cheol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.12
    • /
    • pp.1427-1434
    • /
    • 2014
  • Among the medical devices, medical treatments inflicting physical energy from the outside of the body to the inside or using the energy from the devices which take advantages of chemical changes of the human body require a high degree of reliability and safety. In particular, the medical treatment on the most exposed skin to the external surface in all parts of the human body will be very important. In this perspective, when you undergo skin treatment, you need to reduce all risks and to maximize the effect of treatment equipment. Therefore, the development of equipment which guarantees high therapeutic efficacy and safety is essential.

A Study of Ozone Generation Characteristic using Ceramic Catalyst Tube of Ti-Si-Al (Ti-Si-Al형 세라믹 촉매 방전관의 오존 발생 특성 연구)

  • 조국희;김영배;이동훈
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.130-136
    • /
    • 2002
  • A novel ozonizer has been developed using a high frequency surface discharge and a high purity Ti-Si-Al ceramic catalyst as its dielectric component. A cylindrical thin compound ceramic catalyst in reactor is adhered to inside of the film-like outside electrode. And, when experiment condition are oxygen gas temperature of 20 [$^{\circ}C$], inner reactor pressure of 1.6 atm 600[Hz] and flow late of 2[l/min]. the ozonizer can easily produce ozone concentration(50~60[g/㎥]for oxygen) and power efficiency(180[g/kWh]for oxygen) without using a special enrichment means. At 2[l/min], 20[$^{\circ}C$], 1.6[atm], 600[Hz]and 40[W], the result of simulation to gas temperature of reactor using general code Phoenics, the maximum temperature of reactor was 132[$^{\circ}C$]in reactor. Ant the result electric field simulation of Ti-Si-Al type reactor using general code Flux 2D, maximum electric field was 0.131E.08[V/m].

High Concentration Ozone Generation Characteristics by Variation of Additional Gases and Flow Rates of Inlet Gas (입력가스의 유량변화와 첨가가스에 따른 고농도 오존발생특성)

  • 박승록;이대희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.95-101
    • /
    • 2002
  • There are many effective parameters to high concentration ozone generation. These parameters became very important elements should be considered before designing ozone generator. After designing, there are many peripheral parameters to greatly affect to high concentration ozone generation also. In this study, of many effective peripheral parameters on high concentration ozone generation, the effects of flow rate of inlet oxygen gas and some kinds of additional gases on ozone concentration were investigated As a result, when inlet oxygen gas was introduced at the range of 0.75[LPM]~2.00[LPM] the highest ozone concentration of 71145[ppm] was obtained at 1.25[LPM]. When the additional nitrogen gas was mixed to oxygen gas at the range of 0.0[vol%]~6.4[vol%] the highest ozone concentration of 73135[ppm] was obtained at 0.8[vol%] of nitrogen gas. This showed 3[%] increasing compared to the case of pure oxygen gas inlet. When the additional argon gas was mixed to oxygen gas at the range of 0.0[vol%]~6.4[vol%] the highest concentration of 67288[ppm]was obtained at 0.8[vol%]of argon gas. This is decreased value compared to that of introducing the pure oxygen.