• Title/Summary/Keyword: Surface and Silent Discharge

Search Result 26, Processing Time 0.023 seconds

A Design Technology of Ceramic Tube for High Efficiency Ozone

  • Cho, Kook-Hee;Kim, Young-Bae;Lee, Dong-Hoon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.3
    • /
    • pp.77-80
    • /
    • 2003
  • An innovative ozonizer has been developed using a high frequency, surface discharge and a high purity Ti-Si-AI ceramic catalyst as a dielectric component. Using a type of thin film, a thin cylindrical compound ceramic catalyst layer was adhered to the outside surface of its inner electrode. An alternating current (AC) exciting voltage with frequencies from 0.6 KHz to 1.0 KHz and peak-to-peak voltages of 4-6 ㎸ was applied between the electrodes to produce a stable high-frequency silent discharge. A substantial reduction of the exciting voltage was also enabled by means of a thin Ti-Si-Al ceramic catalyst tube. As a result, the ozonizer can effortlessly obtain the required ozone concentration (50-60 g/$m^2$ for oxygen) and high ozone efficiency consumption power (180 g/kWh for oxygen) with-out the assistance of any particular methods. For purposes of this experiment, oxygen gas temperature was set at 2$0^{\circ}C$, with an inner reactor pressure of 1.6 atm at 600 Hz and a flow rate of 2 l/min.

A study on NOx removal in double barrier discharge reactor using pulse power supply (펄스방전을 사용한 이중베리어방전 반응기에 있어서 NOx 제거에 관한 연구)

  • 김동욱;김응복;정영식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.169-172
    • /
    • 1999
  • In this experimental study we Proposed the double dielectric barrier discharge (DDBD) reactor to produce as high an electric field as possible. The experiment are conducted for applied voltage from 15 to 20[tV], flow gas rage at 2[1/min] and pulse rate at 120[pulses/s] and 240[pulses/s]. SPD connection of DDBD which combine the surface discharge with the silence discharge was most effective to reduce the NOx. In the decomposition efficiency per watt, the low pulse rate gave hotter efficiency than that of the high pulse rate. However in DeNOx rate, the high pulse rate gave better performance than that of the low pulse rate. NOx removal rate increased with increasing the applied voltage in all reactors.

  • PDF

Reduction of Height of Taylor Cone Caused by Water Surface Discharge and Its Ozone Generation Characteristics (수표면방전의 방전 수돌기의 높이제한과 오존발생특성)

  • Park, Seung-Lok;Kim, Jin-Gyu;Kim, Ju-Yong;Lee, Dae-Hee;Moon, Jae-Duk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.7
    • /
    • pp.334-339
    • /
    • 2001
  • A silent type ozone generator using water surface has been studied and improved its ozone generation characteristics by the controlling the height of Taylor cone by installing a mesh electrode, a dielectric bed of glass beads in the just under th surface of the water. The current-voltage characteristics and characteristics of ozone generation quantity of the test system were investigated and discharge current oscillograms of the each cases of the mesh electrode and the beds were observed and compared each other to analyze the discharge conditions. The Taylor cone height could be the cause of the discharge bridge to decrease the ozone generation on the discharge spacing. In this study, the hight of Taylor cone could be reduced greatly by installing the mesh and the glass beads bed just under the water surface. Therefore a higher ozone generation also could be obtained.

  • PDF

Discharge and Ozone Generation Characteristics by Permittivity of Dielectric Material installed in Water Surface Discharge (수표면 방전에 투입된 유전체의 유전율에 따른 방전 및 오존발생특성)

  • 박승록;김진규;김형표
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.56-63
    • /
    • 2003
  • A silent type ozone generator using water surface has been studied and improved its ozone generation characteristics by installing dielectric heads in the just under the surface of the wale- At this time, different permittivitis of dielectric beads were used to change the discharge condition of water surface. The current-voltage characteristics and characteristics of ozone generation quantity of the test system were investigated and discharge photos of glass beads were observed The height of Taylor cone may be the cause of the discharge bridge to decrease the ozone generation on the discharge spacing. In this study, the hight of Taylor cone could be controlled greatly by installing dielectric beads just under the water surface. Therefore a higher ozone generation also could be obtained. As the permittivity of dielectric material increased. discharge starting voltage was advanced and maximum 110 ppmy of ozone was generated by using the ferroelectric ball.

A High Efficiency Ozone Generation Using a Electrode-edge Discharge and a Dielectric-Barrier Discharge (전극연면방전(電極沿面放電)과 유전체장벽방전(誘電體障壁放電)을 공용(共用)한 고효율(高效率) 오존발생(發生))

  • Choi, Jae-Gu;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1410-1412
    • /
    • 1995
  • A high efficiency ozone generation using both of a electrode-edge discharge and a dielectric-harrier discharge from a modified silent type ozone generator has been proposed and studied for small scale applications. It is found that the output ozone concentration of the proposed generator depended greatly upon the air gap spacing and the applied power frequency and voltage on the ozone generation. The ozone generator showed higher ozone concentration than the same size of the ceramic type surface ozone generator(Masuda type one). And, it is found that the generator had a potential to be used as an ozone generator for small scale applications.

  • PDF

The simulation on a electric field distribution of dielectric beads with a shape of ball in water (유전체 비드를 이용한 수중 방전의 전계 분포 특성 평가)

  • Lee, Dong-Hoon;Park, Honh-Jae;Park, Jae-Youn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.15-18
    • /
    • 2003
  • In this paper, We explained the best shape design of electrode for discharge on the water. Electrode with rounding was reduced maximum electric field of over 40% to electrode without rounding for discharge on the water and the best shape of electrode for discharge on the water designed when shape of electrode had a curve radius of over $60^{\circ}$ at electrode's face to electrode's face with minimum distance and a curve radius of under $120^{\circ}$ at electrode's side face to electrode's front face. And When dielectric beads are used between electrodes, the life of electrodes is improved by lower stress of electric field on surface of electrodes.

  • PDF

Influences of Mesh Shapes and Interspacings on Ozone Generation Characteristics (그물방전극 형상과 방전공격이 오존생에 미치는 영향)

  • Park, Seung-Lok;Lee, Jae-Chan;Moon, Jae-Duk;Jung, Sung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.29-32
    • /
    • 2000
  • Ozone has been widely applied to many industrial fields because of its strong oxidation effects. Therefore, the studies have been progressed for the effective and high concentration of one generation. The silent or surface discharge have been mainly used for high concentration ozone generation until now. But these two types of ozone generators have shortcomings to be improved. In this study, the ozone generator which improved the shortcomings of above two type of ozone generators was proposed and manufactured for high concentration ozone generation. And the proposed ozone generator could generate the surface and barrier discharge simultaneously. For this purpose, a mesh type discharge electrodes were proposed and the experiments were fulfilled as a function of the widths and spacings of mesh electrodes and gap spacings between the dielectric barrier and mesh electrode. When the width of mesh electrode[WM] and spacing of mesh electrode[SM] are 0.3[mm] and 0.8[mm] respectively, the maximum ozone concentration of 2.96[vol%] was obtained at 5.6[kV], 830[mA], gap spacing (S)=0.65[mm].

  • PDF

Characteristics of Non-thermal Plasma Generation by Duty Ratio and Frequency of Pulse Voltage (펄스고전압의 시비율과 주파수에 따른 비열플라즈마 발생특성)

  • Park, Seung-Lok;Kim, Jin-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.146-150
    • /
    • 2004
  • The effects on non-thermal plasma generation by duty Ratio and frequency of pulse voltage were investigated experimentally. For these, a new type of non-thermal plasma generator with mesh electrode was manufactured and it was possible to generate the surface and silent discharge simultaneously by new type of non-thermal plasma generator. Duty ratio and frequency were selected as main parameters to control the movement of electron which is mainly related to the non-thermal plasma generation. The characteristics of non-thermal plasma generation were investigated indirectly by measuring the I-V curve and quantity of ozone generation. The most effective condition of duty ratio and frequency to generate the non-thermal plasma was identified by experiments with manufactured non-thermal plasma generator.

Ozone Generation Characteristic of Ceramic Reactor using Ti-Al-Si (세라믹 방전관의 오존 발생 특성)

  • Cho, K.H.;Park, J.Y.;Park, S.H.;Lee, D.H.;Park, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.206-208
    • /
    • 2002
  • A novel ozonizer has been developed using a high frequence surface discharge and a high purity ceramic as its dielectric component. And A cylindrical thin compound ceramic catalyst in reactor is adhered to inside of the film-like outside electrode. An ac exciting voltage with frequency to 0.6 kHz from 1.0 kHz and $4{\sim}6$ kV of peak-to-peak is applied between the electrodes to produce a stable high-frequency silent discharge for generation of ozone. A substantial reduction of the exciting voltage is also enabled by using a thin ceramic. As a result, the ozonizer can easily produce ozone concentration(50 $g/m^3$ for oxygen) and power efficiency(240 g/kWh for oxygen) without using a special enrichment means.

  • PDF

A Study on Characteristic of Ceramic Tube for Ozone Generation (오존발생용 세라믹 방전관 특성에 관한 연구)

  • Cho, Kook-Hee;Kim, Young-Bae;Lee, Hong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1724-1726
    • /
    • 2002
  • A novel ozonizer has been developed using a high-frequency surface discharge and a high purity alumina ceramic as its dielectric component. A thin ceramic layer, cylindrical in form, is adhered by a film-like induction electrode. An ac exciting voltage of frequency to 0.6 kHz from 1.0 kHz and $6{\sim}9kV$ peak-to-peak is applied between the electrodes to produce a stable high-frequency silent discharge for generation of ozone. A substantial reduction of the exciting voltage is also enabled by using a thin alumina ceramic layer. As a result, the ozonizer can easily produce ozone concentration($128g/m^2$ for oxygen) and power efficiency(360g/kWh for oxygen) without using a special enrichment means.

  • PDF