• Title/Summary/Keyword: Surface actuator

Search Result 322, Processing Time 0.027 seconds

Micromachining of PZT using Nd:YAG laser (Nd:YAG 레이저를 이용한 PZT의 미세가공)

  • Hong J.U.;Lee J.H.;Suh J.;Shin D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.223-224
    • /
    • 2006
  • In this study, we have investigated the micromachining of PZT to fabricate interdigitated electrodes of electro active material actuator using Nd:YAG laser We have observed groove shapes of PZT with changing beam power, scanning speed, gas, and so on to find optimum conditions of the laser processing for PZT grooves. As a result, this method has been applied to the laser micromachining for grooves in PZT surface, and we could have optimum parameters of Nd:YAG laser Finally it was shown that the laser micromachining of PZT can substitute fer bonding, etching and deposition processes in fabricating electro active material actuator embedded with interdigitated electrodes.

  • PDF

Motion Analysis and Control of Translation Device Driven by Piezoelectric Actuator (압전형 구동기를 갖는 이동기구의 운동해석 및 제어)

  • 이석구;지원호;이종원
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.49-59
    • /
    • 1992
  • The motion analysis of a translation device driven by a piezoelectric actuator is performed to identify the mechanics of impact drive mechanism and to find the maximum speed waveform. The translation device is modeled as a semidefinite two-degree-of-freedom system. The motion analysis includes effects of friction force between moving mass and contact surface, dynamics of voltage amplifier and piezoelectric elements, and hysteresis of piezoelectric actuator. Base on the model, simulation studies are carried out and then compared with experimental results. It is found that the error between moving distances obtained by analysis and experiment is less than 15% and that the actual motion of moving mass is well predicted by the analytical work, finally, precision positioning experiments are carried out by using a proximity sensor as a feedback sensor. Position control of moving mass is initiated by the maximum speed waveform and finely tuned by the scaled down waveform so that accurate positioning is accomplished within the resolution of the sensor.

  • PDF

Development of Fast Moving Ball Actuator Mode for Novel Electronic-Paper Displays

  • Park, Hyo-Joo;Choi, Hong;Lee, Dong-Hyuck;Kim, Dong-Woo;Bae, Byung-Sung;Kim, We-Yong;Kim, Byung-Uk;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.935-936
    • /
    • 2009
  • In this paper, we describe the basic operating mechanism of our novel reflective display, Fast Moving Ball Actuator (FMBA) mode[1], using micro-sized metal coated polymer ball in fluid medium. Metal surface of the ball can be charged up by contact electrode and their locations can be controlled by applied field to obtain optically on and off state. In the medium with high viscosity, the response speed of the moving ball might be reached into their terminal velocity and changed in proportion to the frequency of applied voltage on the electrodes.

  • PDF

Electrical Properties of Multilayer Actuator Structured-ultrasonic Nozzle Driving System using a Resonant Inverter (공진형 인버터를 사용한 적층액츄에이터형 초음파 노즐 구동시스템의 전기적 특성)

  • Hwang, Lark-Hoon;Kim, Hwa-Soo;Kim, Kook-Jin;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.953-958
    • /
    • 2007
  • In this paper, multilayer actuator structured-ultrasonic nozzle and resonant inverter driving circuit were manufactured, respectively. Its electrical properties were investigated. Multilayer actuator structured ultrasonic nozzle was fabricated using PMN-PNN-PZT ceramics showing excellent piezoelectric characteristics. In order to drive ultrasonic nozzle, resonant PWM inverter was used. The purpose of this study is to find the optimal driving condition of ultrasonic nozzle. Accordingly, electrical and temperature characteristic of multilayer ultrasonic driving system were investigated by experiments as a function of the series resonance inductance. The driving current of ultrasonic nozzle showed the maximum current of 27 mA. Also, the surface temperature of ceramic vibrator showed $44^{\circ}C$ at driving time for 20 min. The ultrasonic nozzle was stably operated in the case of driving for more than 20 min.

CONTROL OF CIRCULAR CYLINDER WAKE USING PLASMA ACTUATION (플라즈마 가진에 의한 원형 실린더 후류의 제어)

  • Kim, Dong-Joo
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2012
  • Numerical simulations are carried out for flow over a circular cylinder controlled by the momentum forcing which is generated by a pair of plasma actuators symmetrically mounted on the cylinder surface. A popular and empirical plasma model is used for the spatial distribution of momentum forcing. In this study, we consider two different types of actuation, i.e., steady and unsteady (or pulsed) actuation. In the unsteady actuation, the actuation is turned on and off periodically, its frequency being a control parameter. The objective of this study is to investigate the effects of actuator location and actuation frequency on the flow structures and the forces on the cylinder. Results show that the cylinder wake can be effectively controlled by proper actuator location. For example, when the actuators are located at $120^{\circ}$ from the stagnation point, vortex shedding is completely suppressed with the boundary layer almost fully attached to the surface, resulting in drag reduction and lift elimination.

A Micro Actuator using Meissner Effect of High Tc Superconducting Film (Meissnac)

  • Kim, Yong-Kwon;Katsurai, Makoto;Fujita, Hiroyuki
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.349-352
    • /
    • 1988
  • A problem of the surface friction is inevitable in the micro machines. However, the levitation by Meissner effect of high Tc superconductor gives a complete solution to the problem. The repulsive force between permanent magnets and superconductors is utilized to levitate and actuate micro structures without the surface friction. In this paper, a micro actuator using; Meissner effect of high Tc superconducting film (Meissnac) is proposed ; Meissnac is drived by the control of (Sugerconducting/ Normal) states of superconductor. The levitating force and the driving force are analyzed by the numerical method.

  • PDF

Reduction of Rolling Mode Effect through Optimization of Tracking Coils (트래킹 코일 형상 최적화를 통한 롤링 모드 저감)

  • 윤기탁;김철진;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.195-199
    • /
    • 2004
  • Recently, optical disc drives are required to have high density and capacity in according with development of high definition images and rapid increase of various informations. Consequently, the numerical aperture becomes larger, the wavelength of laser is coming to be short. However, it deteriorates rolling mode effect on an optical pickup actuator. Therefore, this paper proposes new design and optimization of tracking coils for reducing it. First, we verify that discord between the center of force and the center of mass by restrictions of design condition is an important factor of rolling mode effect. Then, in order to reduce it, we propose new design parameters of tracking coils. Finally, we reduce rolling mode effect through optimization of tracking coils using Taguchi method and response surface method.

  • PDF

Dynamic Analysis of Tip-actuators for Controlling Tip-media Gap in Cantilever Type Optical Data Storage (캔틸레버형 광 정보저장에서의 빠른 팁/매체 간극제어를 위한 팁/구동기의 동역학적 분석)

  • 이성규;송기봉;김준호;김은경;박강호;남효진;이선영;김영식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1004-1008
    • /
    • 2003
  • Near-filed optical storage using cantilever aperture tip is a promising way fer next generation optical data storage. To enhance the speed of reading and writing data, gap between tip and media should be controlled fast and precisely within near field region. In this paper, several PZT actuators are analyzed far constructing dual servo control algorithm: coarse actuators(stact. PZT, bimorph PZI) for media surface inclination and One actuator(film PZT) for media surface roughness. Dynamic analysis of stack PZT, bimorph PZT, and film PZT are performed through the frequency response. Based on the frequency response and mathematical model, fast analog controller is designed.

  • PDF

A Study on the Fault Tolerant Control System for Aircraft Sensor and Actuator Failures via Neural Networks (신경회로망을 이용한 항공기 센서 및 구동장치 고장보완 제어시스템 설계에 관한 연구)

  • Song, Yong Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.171-179
    • /
    • 2003
  • In this paper a neural network-based fault tolerant control system for aircraft sensor and actuator failures is considered. By exploiting flight dynamic relations a set of neural networks is constructed to detect sensor failure and give alternative signal for the faulty sensor. For actuator failures another set of neural networks is designed to perform fault detection, identification, and accomodation which returns the aircraft to a new stable trim. Integrated system is simulated to show the performance of the system with sensor and control surface failures.

  • PDF

NUMERICAL STUDY ON SYNTHETIC-JET-BASED FLOW SUPPLYING DEVICE (합성제트 기반의 유량 공급 장치에 대한 수치적 연구)

  • Park, M.;Lee, J.;Kim, C.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.77-83
    • /
    • 2015
  • Flow characteristics of synthetic jet based flow supplying devices have been computationally investigated for different device shapes. Jet momentum was produced by the volume change of a cavity by two piezoelectric-driven diaphragms. The devices have additional flow path compared with the original synthetic jet actuator, and these flow path changes the flow characteristics of synthetic jet actuator. Four non-dimensional parameters, which were functions of the shapes of the additional flow path, were considered as the most critical parameters in jet performance. Comparative studies were conducted to compare volume flow rate and jet velocity. Computed results were solved by 2-D incompressible Navier-Stokes solver with k-w SST turbulence model. Detailed computations revealed that the additional flow path diminishes suction strength of the synthetic jet actuator. In addition, the cross section area of the flow path has more influence over the jet performances than the length of the flow path. Based on the computational results, the synthetic jet based flow supplying devices could be improved by applying suitable shape of the flow path.