• Title/Summary/Keyword: Surface abrasion test

Search Result 163, Processing Time 0.024 seconds

Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials

  • Sismanoglu, Soner;Gurcan, Aliye Tugce;Yildirim-Bilmez, Zuhal;Turunc-Oguzman, Rana;Gumustas, Burak
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.1
    • /
    • pp.22-32
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the microshear bond strength (µSBS) of four computer-aided design/computer-aided manufacturing (CAD/CAM) blocks repaired with composite resin using three different surface treatment protocols. MATERIALS AND METHODS. Four different CAD/CAM blocks were used in this study: (1) flexible hybrid ceramic (FHC), (2) resin nanoceramic (RNC), (c) polymer infiltrated ceramic network (PICN) and (4) feldspar ceramic (FC). All groups were further divided into four subgroups according to surface treatment: control, hydrofluoric acid etching (HF), air-borne particle abrasion with aluminum oxide (AlO), and tribochemical silica coating (TSC). After surface treatments, silane was applied to half of the specimens. Then, a silane-containing universal adhesive was applied, and specimens were repaired with a composite, Next, µSBS test was performed. Additional specimens were examined with a contact profilometer and scanning electron microscopy. The data were analyzed with ANOVA and Tukey tests. RESULTS. The findings revealed that silane application yielded higher µSBS values (P<.05). All surface treatments were showed a significant increase in µSBS values compared to the control (P<.05). For FHC and RNC, the most influential treatments were AlO and TSC (P<.05). CONCLUSION. Surface treatment is mandatory when the silane is not preferred, but the best bond strength values were obtained with the combination of surface treatment and silane application. HF provides improved bond strength when the ceramic content of material increases, whereas AlO and TSC gives improved bond strength when the composite content of material increases.

Comparison of shear bond strength according to various surface treatment methods of zirconia and resin cement types (지르코니아의 다양한 표면처리 방법과 레진시멘트 종류에 따른 전단결합강도 비교)

  • Bae, Ji-Hyeon;Bae, Gang-Ho;Park, Taeseok;Huh, Jung-Bo;Choi, Jae-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.2
    • /
    • pp.153-163
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate the effects of four surface treatment methods to improve zirconia roughness and three types of resin cement on the shear bond strength (SBS). Materials and methods: A total of 120 zirconia blocks were randomly divided into four surface treatments: non-treatment (Control), airborne-particle abrasion (APA) with 50 ㎛ Al2O3 (APA50), APA with 125 ㎛ Al2O3 (APA125), and ZrO2 slurry (ZA). Three resin cements (Panavia F 2.0, Superbond C&B, and Variolink N) were applied to the surface-treated zirconia specimens. All specimens were subjected to SBS testing using a universal testing machine. The surface of the representative specimens of each group was observed by scanning electron microscope (SEM). SBS data were analyzed with oneway ANOVA, two-way ANOVA test and post-hoc Tukey HSD Test (α=.05). Results: In the surface treatment method, APA125, APA50, ZA, and Control showed high shear bond strength in order, but there was no significant difference between APA125 and APA50 (P>.05). Also, ZA showed significantly higher shear bond strength than Control (P<.05). In the resin cement type, Panavia F 2.0, Superbond C&B, and Variolink N showed significantly higher shear bond strength in order (P<.05). In SEM images, the zirconia surfaces of the APA50 and APA125 showed quite rough and irregular shapes, and the zirconia surface of the ZA was observed small irregular porosity and rough surfaces. Conclusion: APA and ZrO2 slurry were enhanced the surface roughness of zirconia, and Panavia F 2.0 containing MDP showed the highest shear bond strength with zirconia.

An Experimental Study of Ultra-precision Turning of High Transmittance Optical Glass(SF57HHT) (고투과율 광학유리(SF57HHT) 초정밀절삭의 실험적 연구)

  • Kim, Min-Jae;Lee, June-Key;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.191-195
    • /
    • 2012
  • Heavy flint optical glass(SF57HHT) is new material that has extremely high transmittance. Due to brittleness and high hardness, optical glass is one of the most difficult to materials for ultra-precision turning. According to the hypothesis of ductile machining, all materials, regardless of their hardness and brittleness, will undergo transition from brittle to ductile machining region below critical undefromed chip thickness. In this study, cutting test was carried out to evaluate cutting performance of heavy flint glass using ultra-precision machine with single crystal diamond bite. The machined workpiece surface topography, tool wear and surface roughness were examined using AFM and SEM. The experimental results indicate that the machining mode become the brittle mode to ductile mode, when the maximum undeformed chip thinkness is large than critical value. Tool wear mainly occurs on the flank face and its wear mechanism is dominated by abrasion. This study demonstrates the feasibility of SF57HHT by diamond turning.

Labyrinth Seal Design for Preventing Internal Inflow of Plating Solution (도금액의 내부 유입 방지를 위한 래버린스 시일 설계)

  • Lee, Duck-Gyu;Kim, Wan-Doo
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.256-262
    • /
    • 2017
  • Molten zinc plating is a process in which zinc is thinly coated over a metallic or non-metallic surface. It is used in various industrial fields for corrosion resistance and decoration. During the process, a steel sheet is passed through a roll that rotates inside the molten zinc liquid in the temperature range of $460^{\circ}C$ to $680^{\circ}C$, and the plating liquid flows into the roll causing abrasion and erosion of the roll surface. This problem is known to accelerate the replacement cycle of the roll and cause considerable economic loss owing to production line stoppage. Here, we propose a mechanism that operates at high temperature and pressure with a labyrinth type seal design to resolve this problem. We theoretically investigate the flow of the plating solution inside the seal and compute the minimum rotation speed required to prevent the plating solution from entering the seal chamber. In addition, we calculate the thermal deformation of the seal during operation and display thermally deformed dimensions at high temperatures. To verify the theoretical results, we perform experiments using pilot test equipment working in the actual plating environment. The experimental results are in good agreement with theoretical results. We expect our results to contribute towards the extension of the roll's life span and thereby reduce the economic losses.

A Study on Tribology Characteristics of Laser Patterned DLC Thin Films (Laser patterning된 DLC 박막의 Tribology 특성연구)

  • Lee, Ji Seok;Kim, Dong Jun;Shin, Dong Chul;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.1
    • /
    • pp.25-32
    • /
    • 2020
  • In this study, the tribology of laser patterned DLC thin film was studied. DLC thin films were coated by RF-PECVD to improve the durability of tungsten carbide (WC) materials. DLC thin films have high hardness and low friction characteristics. Dot and line patterning was processed on the surface of DLC thin film with femtosecond laser, and the coefficient of friction was improved. As a result of ball on disk abrasion test, the hardness and friction coefficient of DLC thin films were much better than that of WC material. The friction coefficient of DLC thin film with dot patterning and line patterning showed better results. The excellent performance of the laser patterned DLC coating is appeared to reduce the coefficient of friction due to the reduction of surface contact area.

Effect of Atmosphere on Corrosive Wear of Alloy Cast Iron for Cylinder Liner of Large Ship Engine (선박 엔진의 실린더 라이너용 합금주철의 부식마멸에 미치는 분위기의 영향)

  • Koo, Hyunho;Cho, Yonsang;Cho, Hwayoung;Park, Heungsik
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.233-239
    • /
    • 2012
  • The engine of a large ship operates under wet conditions using a fuel such as bunker C oil, which includes sulfur and many impurities. A cylinder liner made of cast iron is very susceptible to damage such as scuffing on the surface. This scuffing can reliably be attributed to the destruction of the oil film and the corrosion wear caused by water and sulfur included in the fuel, along with abrasion impurities and poor lubricants. In this study, a reciprocating friction and wear test was carried out with a cast iron specimen, which was used to simulate an engine cylinder in a corrosive environment. Base-oil and stirred oil containing distilled water, NaCl solution, and dilute sulfuric acid were used as lubricants. The friction surface was analyzed using a microscope and EDAX, and the friction coefficient was measured using a load-cell under each experimental condition. We then attempted to investigate the damage to the cylinder liner using the results.

A Study of the Effect of Asperity Change on the Shear Strength of Joint Plane (절리면의 거칠기 변화가 전단강도에 미치는 영향)

  • Cho, Taechin;Suk, Jaewook;Lee, Jonggun
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.401-412
    • /
    • 2013
  • Multi-stage shear test has been performed using joint specimens of gneiss, granite and shale to investigate the influence of micro-scale asperity change on the shear strength of joint plane. For each shear test asperity degradation characteristics of joint specimens of different joint surface strength have been analyzed by utilizing the optimum asperity parameter which can reflect the sequential asperity degradation. Elevation of joint surface profile has been measured and both the changes of asperity parameters and micro-scale asperity distribution have been investigated. Two distinctive variation modes of cohesion and friction angle have been delineated and major cause of shear strength parameter change has been analyzed by considering the micro-scale asperity angle change resulting from the abrasion, fracturing and regeneration of micro-scale asperities. Effects of micro-scale asperity variation on the joint shear strength have been also investigated.

Corrosive Wear of Alloy 690 Tubes in Alkaline Water

  • Hong, Seung Mo;Jang, Changheui;Kim, In Sup
    • Corrosion Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.126-131
    • /
    • 2009
  • The interaction between wear and corrosion can significantly increase total material losses in water chemistry environment. The corrosive wear tests of a PWR steam generator tube material (Alloy 690) against the anti vibration bar material (409 SS) were performed at room temperature. The tests were performed in alkaline water chemistry conditions. NaOH solution was selected for test condition to investigate the corrosive wear effect of steam generator tube material in alkaline pH condition without other factors. The flow induced vibration can caused tube damage and the corrosion can be occurred by water chemistry. The test results showed that, in the alkaline solution at pH 13.9, the corrosion current density was increased about ten times than that in the distilled water. And wear rate at pH 13.9 was increased about ten times from that at neutral condition. However, the wear rate was decreased with time. The decrease would be attributed to the change in roughness of specimen or sub-layer of the worn surface with time. From microstructure observation, severe abrasive shape and several wear debris were found. From those results, it could infer that the oxide film on Alloy 690 changed to easily breakable one in the alkaline water, and then abrasion with corrosion became the main wear mechanism.

A Study on Synthesis Acrylic Polymer Resin and Mechanical Properties Containing Monoammonium Phosphate (Monoammonium phosphate를 포함한 아크릴 수지의 합성 및 물성에 관한 연구)

  • Lee, Joo-Youb;Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.500-508
    • /
    • 2014
  • For this research, synthesis acrylic resin by ethyl acrylate monomer(EAM) and prepared samples which set by difference amount of monoammonium phosphate solution in waterborne acrylic resin. Use these resins, analyzed mechanical properties and thermal stability by films and leather surface coated. The test of DSC experiment sample WAC-APS3 was $410^{\circ}C$ Tm values which means the highest content of monoammonium phosphate had highest thermal stability in acrylic resin. According to measure data for solvent resistance, all samples showed good property. As known in the results, increase of ammonium phosphate constant did not influence to big change of resin properties. In abrasion test WAC-APS3 was good abrasion properties(68.729 mg.loss). Test of tensile strength, as increase as monoammonium phosphate resin analyzed low properties $1.505kgf/mm^2$ to $1.275kgf/mm^2$. In elongation case, same as strength test result 425 % to 384 % by increase to monoammonium phosphate amount in acrylic resin.

AN IN-VITRO WEAR STUDY OF DENTAL PORCELAINS AND HUMAN ENAMEL (치과용도재에 의한 법랑질 마모에 관한 연구)

  • Lee, Young-Kook;Lee, Sun-Hyung;Yang, Jae-Ho;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.1
    • /
    • pp.51-70
    • /
    • 1999
  • Dental porcelain is one of the materials of choice for restoration where esthetics is of concern, but has a considerable potentials of wear. The wear of enamel is variable when opposed by different porcelain systems and surface conditions, and the exposed dentine and opaque porcelain due to clinical failure is expected to have high potentials of wear. The purpose of this study was to investigate the wear effects of self-glazed, polished incisal porcelain. polished dentine and opaque porcelain against human enamel in the laboratory by use of a pin-on-disk type wear tester. 4 types of dental porcelain($Vita-{\Omega}$, Ceramco-II, Vintage powder $Vita-{\alpha}$ of In-Ceram system) and type IV gold alloy as cotrol group were used for test specimens. Intact buccal cusps of maxillary premolar were used for enamel specimens, and the cusp converged to a point and was devoid of visible abrasion, caries, decalcification. The upper part was the cusp of a maxillary premolar and the lower part was a porcelain specimen. The enamel wear was deter-mined by weighing the cusp before and after each test. Surface profilometer was used to quantitate wear of the porcelain specimens. Vicker's hardness tester was used to evaluate the surface hardness of test specimens. The SEM was used to evaluate the wear surfaces. The results were as follows : 1 Self-glazed porcelain produced more enamel wear than polished porcelain, especially the enamel wear of $Vita-{\alpha}$ self-glazed porcelain was 3.2 times more than that of other groups. 2. Opaque porcelain produced least porcelain wear, $Vita-{\alpha}$ self-glazed porcelain produce greatest porcelain wear, but there was no statistically significant difference between the groups(p>0.05). 3. The enamel wear of dentine porcelain was 3.8 times more than that of polished inisal porcelain(p<0.05), and the enamel wear of opaque porcelain was 1.9 times more than that of polished inisal porcelain, but there was no statistically significant difference between the groups(p>0.05) 4. Overglazed porcelain produced less enamel wear than self-glazed porcelain, and more enamel wear than polished porcelain, but there was no statistically significant difference between the groups(P>0.05). 5. The hardness number of $Vita-{\Omega}$ dentine and Ceramco-II opaque porcelain was larger, but that of Vintage dentine and $Vita-{\alpha}$ self-glazed porcelain was similar to other groups. 6. Examination of SEM photographs revealed that overglazed porcelain had smoother surface than self-glazed porcelain, and self-glazed porcelain had smoother surface than polished porcelain. Much polishing scratches and larger porosities were observed on the opaque porcelain specimen, and much polishing scratchess and small porosities were observed on the dentine porcelain specimen.

  • PDF