• 제목/요약/키워드: Surface Winds

검색결과 237건 처리시간 0.024초

태백산맥의 지형적인 효과와 관련된 강릉 지역의 강풍 사례에 대한 수치모의 연구 (A numerical study of the orographic effect of the Taebak mountains on the increase of the downslope wind speed near Gangnung area)

  • 이재규
    • 한국환경과학회지
    • /
    • 제12권12호
    • /
    • pp.1245-1254
    • /
    • 2003
  • A numerical simulation for 11 February 1996 has been done to grasp main mechanisms of the occurrence of strong downslope winds near Gangnung area. The simulation performed by using ARPS (Advanced Regional Prediction System) showed that enhanced surface winds were not related with a reflection of vertically propagating gravity waves. Froude numbers were about 1.0, 0.4 and 0.6 for the atmosphere above Daekwanryoung and above a place located 220km upstream, and above another place located 230km downstream from the Taebak mountains, respectively. This suggested that as a subcritical flow ascended the upslope side of the Taebak mountains, Froude numbers would tend to increase according to the increase in wind speed, and near the crest the flow would become supercritical and continue to accelerate as it went down the downslope side until it was adapted back to the ambient subcritical conditions in a turbulent hydraulic jump. Simulated Froude numbers corroborated the hydraulic jump nature of the strong downslope wind. In addition, the inversion was found near the mountain top height upstream of the mountains, and it was favorable for the occurrence of strong downslope winds.

한반도 바람지도 구축에 관한 연구 (I. 원격탐사자료에 의한 종관 바람지도 구축) (Study on Establishment of a Wind Map of the Korean Peninsula (I. Establishment of a Synoptic Wind Map Using Remote-Sensing Data))

  • 김현구;최재우;이화운;정우식
    • 신재생에너지
    • /
    • 제1권1호
    • /
    • pp.44-53
    • /
    • 2005
  • To understand general status of the national wind environment and to distinguish potential areas to be developed as a largescale wind farm, a synoptic wind map of the Korean Peninsula is established by processing remote sensing data of the satellite, NASA QuikSCAT which Is deployed for the SeaWinds Project since 1999. According to the validation results obtained by comparing with the measurement data of marine buoys of KMA(Korea Meteorological Administration), the cross-correlation factor Is greatly Improved up to 0.87 by blending the sea-surface dat3 of QuikSCAT with NCEP/NCAR CDAS data. It is found from the established synoptic wind map that the wind speed in winter is prominent temporally and the South Sea shows high energy density up to the wind class 6 spatially. The reason is deduced that the northwest winds through the yellow Sea and the northeast winds through the East Sea derived by the low-pressure developed in Japan are accelerated passing through the Korea Channel and formed high wind energy region in the South Sea; the same trends are confirmed by the statistical analysis of meteorological observation data of KMA.

  • PDF

Wind Vector Retrieval from SIR-C SAR Data off the East Coast of Korea

  • Kim, Tai-Sung;Park, Kyung-Ae;Moon, Woo-Il
    • 한국지구과학회지
    • /
    • 제31권5호
    • /
    • pp.475-487
    • /
    • 2010
  • Sea surface wind field was retrieved from high-resolution SIR-C SAR data by using CMOD algorithms off the east coast of Korea. In order to extract wind direction information from SAR data, a two-dimensional spectral analysis method was applied to the normalized radar cross section of the image. An $180^{\circ}$-ambiguity problem in the determination of wind direction was solved by selecting a direction nearest to the wind vector of the ECMWF reanalysis data. Comparison of the wind retrieval patterns with the ECMWF and NCEP/NCAR dataset showed RMS errors in the range of 1.30 to $1.72\;ms^{-1}$. In contrast, comparison of wind directions revealed large errors of greater than $60^{\circ}$, which is enormously higher than the permitted limit of about $20^{\circ}$ for satellite scatterometer winds. Compared with wind speed results from different algorithms, wind vectors based on commonly-used CMOD4 algorithm showed good agreement with those derived by other algorithms such as CMOD_IFR2 and CMOD5, particularly at medium winds from 4 to $8\;ms^{-1}$. However, apparent discrepancy appeared at low winds (< $4\;ms^{-1}$). This study also addressed an importance of accurate wind direction data to improve the accuracy of wind speed retrieval and discussed potential causes of wind retrieval errors from SAR data.

용평 알파인 경기장에서 겨울철 바람의 일변화 및 난류 특성분석 (An Analysis of the Wintertime Diurnal Wind Variation and Turbulent Characteristics over Yongpyong Alpine Slope)

  • 전혜림;김병곤;은승희;이영희;최병철
    • 대기
    • /
    • 제26권3호
    • /
    • pp.401-412
    • /
    • 2016
  • A 3D sonic anemometer has been installed at Yongpyong alpine slope since Oct. 23th 2014 to observe the slope winds and to analyze turbulent characteristics with the change in surface cover (grass and snow) and the synoptic wind strength. Eddy covariance method has been applied to calculate the turbulent quantity after coordinate transformation of a planar-fit rotation. We have carefully selected 3 good episodes in the winter season (23 October 2014 to 28 February 2015) for each category (9 days in total), such as grass and snow covers in case of weak synoptic wind condition, and grass cover of strong synoptic wind. The diurnal variations of the slope winds were well developed like the upslope wind in the daytime and downslope wind in the nighttime for both surface covers (grass and snow) in the weak synoptic forcing, when accordingly both heat and momentum fluxes significantly increased in the daytime and decreased in the nighttime. Meanwhile, diurnal variation of heat flux was not present on the snow cover probably in associated with significant fraction of sunlight reflection due to high albedo especially during the daytime in comparison to those on the grass cover. In the strong synoptic regime, the most dominant feature at Yongpyong, only the southeasterly downslope winds were steadily generated irrespective of day and night with significant increases in momentum flux and turbulent kinetic energy as well, which could suggest that local circulations are suppressed by the synoptic scale forcing. In spite of only one season analysis applied to the limited domain, this kind of an observation-based study will provide the basis for understanding of the local wind circulation in the complex mountain domain such as Gangwon in Korea.

A Change of Large-scale Circulations in the Indian Ocean and Asia Since 1976/77 and Its Impact on the Rising Surface Temperature in Siberia

  • Lim, Han-Cheol;Jhun, Jong-Ghap;Kwon, Won-Tae;Moon, Byung-Kwon
    • 한국지구과학회지
    • /
    • 제30권5호
    • /
    • pp.660-670
    • /
    • 2009
  • This study examines the changes of an interdecadal circulation over the Asian continent to find cause of the surface warming in Siberia from 1958 to 2004. According to our study, there is a coherency between a long-term change of sea surface temperature in the Indian Ocean and the rapid increase of air temperature in Siberia since 1976/1977. In this study, we suggest that mean wind field changes induced by the positive sea surface temperature anomalies of the Indian Ocean since 1976/1977 are caused of inter-decadal variations in a large-scale circulation over the Asian continent. It also indicates that the inter-decadal circulation over the Asian continent is accompanied with warm southerly winds near surface, which have significantly contributed to the increase of surface temperature in Siberia. These southerly winds have been one of the most dominant interdecadal variations over the Asian continent since 1976/1977. In addition, we investigated the long-term trend mode of 850 hPa geopotential height data over the Asian continent from the Empirical Orthogonal Function (EOF) analysis for 1958-2004. In result, we found that there was an anomalously high pressure pattern over the Asian continent, it is called 'the Asian High mode'. It is thus suggested that the Asian High mode is another response of interdecadal changes of large-scale circulations over the Asian continent.

한반도 바람자원의 시공간적 분포 (Spatial and temporal distribution of Wind Resources over Korea)

  • 김도우;변희룡
    • 대기
    • /
    • 제18권3호
    • /
    • pp.171-182
    • /
    • 2008
  • In this study, we analyzed the spatial and temporal distribution of wind resources over Korea based on hourly observational data recorded over a period of 5 years from 457 stations belonging to Korea Meteorological Administration (KMA). The surface and 850 hPa wind data obtained from the Korea Local Analysis and Prediction System (KLAPS) and the Regional Data Assimilation and Prediction System (RDAPS) over a period of 1 year are used as supplementary data sources. Wind speed is generally high over seashores, mountains, and islands. In 62 (13.5%) stations, mean wind speeds for 5 years are greater than $3ms^{-1}$. The effects of seasonal wind, land-sea breeze, and mountain-valley winds on wind resources over Korea are evaluated as follows: First, wind is weak during summer, particularly over the Sobaek Mountains. However, over the coastal region of the Gyeongnam-province, strong southwesterly winds are observed during summer owing to monsoon currents. Second, the wind speed decreases during night-time, particularly over the west coast, where the direction of the land breeze is opposite to that of the large-scale westerlies. Third, winds are not always strong over seashores and highly elevated areas. The wind speed is weaker over the seashore of the Gyeonggi-province than over the other seashores. High wind speed has been observed only at 5 stations out of the 22 high-altitude stations. Detailed information on the wind resources conditions at the 21 stations (15 inland stations and 6 island stations) with high wind speed in Korea, such as the mean wind speed, frequency of wind speed available (WSA) for electricity generation, shape and scale parameters of Weibull distribution, constancy of wind direction, and wind power density (WPD), have also been provided. Among total stations in Korea, the best possible wind resources for electricity generation are available at Gosan in Jeju Island (mean wind speed: $7.77ms^{-1}$, WSA: 92.6%, WPD: $683.9Wm^{-2}$) and at Mt. Gudeok in Busan (mean wind speed: $5.66ms^{-1}$, WSA: 91.0%, WPD: $215.7Wm^{-2}$).

Comparison of the Wind Speed from an Atmospheric Pressure Map (Na Wind) and Satellite Scatterometer­observed Wind Speed (NSCAT) over the East (Japan) Sea

  • Park, Kyung-Ae;Kim, Kyung-Ryul;Kim, Kuh;Chung, Jong-Yul;Conillor, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • 제38권4호
    • /
    • pp.173-184
    • /
    • 2003
  • Major differences between wind speeds from atmospheric pressure maps (Na wind) and near­surface wind speeds derived from satellite scatterometer (NSCAT) observations over the East (Japan) Sea have been examined. The root­mean­square errors of Na wind and NSCAT wind speeds collocated with Japanese Meteorological Agency (JMA) buoy winds are about $3.84\;ms^{-1}\;and\;1.53\;ms^{-1}$, respectively. Time series of NSCAT wind speeds showed a high coherency of 0.92 with the real buoy measurements and contained higher spectral energy at low frequencies (>3 days) than the Na wind. The magnitudes of monthly Na winds are lower than NSCAT winds by up to 45%, particularly in September 1996. The spatial structures between the two are mostly coherent on basin­wide large scales; however, significant differences and energy loss are found on a spatial scale of less than 100 km. This was evidenced by the temporal EOFs (Empirical Orthogonal Functions) of the two wind speed data sets and by their two­dimensional spectra. Since the Na wind was based on the atmospheric pressures on the weather map, it overlooked small­scale features of less than 100 km. The center of the cold­air outbreak through Vladivostok, expressed by the Na wind in January 1997, was shifted towards the North Korean coast when compared with that of the NSCAT wind, whereas NSCAT winds revealed its temporal evolution as well as spatial distribution.

기상청 부이 관측결과를 이용한 파랑모델 비교 : 2002년 - 2005년 (Comparison of Wave Model with KMA Buoy Observation Results in the 2002 - 2005 year)

  • 유승협;서장원;장유순;박상욱;윤용훈
    • 대기
    • /
    • 제16권4호
    • /
    • pp.279-301
    • /
    • 2006
  • This study analyzed the characteristics of the wind waves near the Korean marginal seas in the 2002 - 2005 year using the third generation wave model, WAVEWATCH - III model. In order to investigate the model performance, model results were compared with the marine meteorological observation results. The 4 years average correlation coefficient between model and observation shows very high value of about 0.77. The model of this study represents very well the characteristics of wind waves near the Korean marginal seas. Simulated monthly sea surface winds and wind waves show the evident spatial variations and this model also simulates very well seasonal characteristics of wind waves in this region.

낙동강 구미 보의 증기 안개에 관한 연구 (On the Steam Fog in the Gumi Reservoir of Nakdong River)

  • 김해동;조창범;서광수
    • 한국환경과학회지
    • /
    • 제25권1호
    • /
    • pp.163-171
    • /
    • 2016
  • We analyzed the characteristics of fog formation in the Gumi Reservoir of Nakdong river with the field observation data for recent 2 years (1 April 2013~31 March 2015) collected by the national institute of meteorological research, KMA. In early morning, we frequently observe the steam rising from the water surface. The fog occurs from adding water vapor into the air. We call the fog as steam fog. Steam fogs occur when cold, dry air mixes with warm, moist air above a water surface. The steam fog appears mainly in autumn under the following conditions; (1) sensible heat is positive values ($10{\sim}20W/m^2$), (2) latent heat is more positive values ($25{\sim}35W/m^2$) than sensible heat, (3) cloudless nights with light winds (about 1.5 m/s), (4) under condition(3), mountainous winds easily blows into the reservoir.

High-Resolution Flow Simulations Around a Steep Mountainous Island in Korea Using a CFD Model with One-way Nested Grid System

  • Mun, Da-Som;Kim, Jae-Jin
    • 대한원격탐사학회지
    • /
    • 제36권4호
    • /
    • pp.557-571
    • /
    • 2020
  • High-resolution flows around a steep mountainous island (Ulleungdo) in Korea were simulated by a computational fluid dynamics (CFD) model. To cover entire Ulleungdo and to resolve the topography around the Ulleungdo automatic synoptic observing system (ASOS) with high resolution, one-way nested grid system with large (60 m), and small (20 m) grid sizes was applied in the CFD model simulations. We conducted the numerical simulations for 16 inflow directions, and, for each inflow direction, we considered six different wind velocities(5, 10, 15, 20, 25, and 30 m s-1) at the reference height (1,000 m). The effects of topography on surface wind observations were well reflected in the observed wind roses for the period of January 01, 2012 ~ December 31, 2016 at the Ulleungdo ASOS and marine buoy. Wind roses at the Ulleungdo ASOS was reproduced based on the CFD simulations. The changes in surface winds at the Ulleungdo ASOS caused by surrounding topography were relatively well simulated by the CFD model. The simulated wind-rose indicated that south-southwesterly and northeasterly were the dominant wind directions, which were also observed at the Ulleungdo ASOS. We investigated the flow characteristics around the Ulleungdo ASOS for northwesterly, south-southwesterly, and northeasterly winds in detail.