• Title/Summary/Keyword: Surface Stability

Search Result 3,613, Processing Time 0.03 seconds

Electrochemical Properties of Needle Coke through a Simple Carbon Coating Process for Lithium Ion Battery (침상 코크스의 피치 코팅에 따른 리튬 이차전지 탄소계 음극소재의 전기화학적 특성)

  • Hwang, Jin Ung;Lee, Jong Dae;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.514-519
    • /
    • 2020
  • Graphite materials for lithium ion battery anode materials are the most commercially available due to their structural stability and low price. Recently, research efforts have been conducted on carbon coatings by improving side reactions at the edge site of carbon materials. The carbon coating process has classified into a CVD by chemical reaction, wet coating process with solvent and dry coating by mechanical impact. In this paper, the rapid crush/coating process was used to solve the problem of which only few parts of the carbon precursor (pitch) can be used and also environmental problems caused by solvent removal in the wet coating process. When the ratio of needle coke to pitch was 8 : 2 wt%, and the rapid crush/coating process was carried out, it was confirmed that the fracture surface was coated by pitch. The pitch-coated sample was treated at 2400 ℃ and 41.8% improvement in 10C/0.1C rate characteristic was observed. It is considered that the material simply manufactured through the simple crush/coating process can be used as an anode electrode material for a lithium ion battery.

The Solidification Characteristics of Recycled Aggregate Mixed with Incineration Ash and Waste Concrete (소각재와 폐콘크리트를 이용한 재생골재의 고형화 특성)

  • Yeon, Ikjun;Ju, Soyoung;Lee, Sangwoo;Shin, Taeksoo;Kim, Kwangyul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.5-13
    • /
    • 2008
  • In this study, It was carried out to evaluate the feasibility of recycled crushed concrete as aggregate used cement mortar replace sand and to investigate engineering properties of recycled aggregate for hazardous waste solidification. The compressive strength of cement mortar replaced 5-15% (wt.) recycled aggregate was over $163kgf/cm^2$ which is the standard of first grade concrete block class C. And cement mortar was examined to evaluate the stability by leaching test. Cu, Cd, Pb, Cr, and As as the heavy metals were proved very stable but mercury (Hg) was leached high concentration because it was simply tied to the cement surface. We investigated the crystal structures of cement mortar and they had shown the peaks of $Ca(OH)_2$, ettringite, and CSH (calcium silicate hydrate). As the result, the longer curing time, the higher CSH peak that means to increase compressive strength and the cement mortar was more stable. Therefore it was shown that it may be possible to apply hazardous waste solidification using recycled aggregate, fly ash and sewage sludge ash.

  • PDF

Finite Element Stress Analysis of Bone Tissue According to the Implant Connection Type (2종의 임플란트 내부결합구조체에 따른 치조골상 유한요소응력 분석)

  • Byun, Ook;Jung, Da-Un;Han, In-Hae;Kim, Seong-Ryang;Lee, Chang-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.259-271
    • /
    • 2013
  • The purpose of this study was to make the stress distribution produced by simulated different load under two types of internal connection implant system (stepped and tapered type) by means of 3D finite element analysis, The finite element model was designed with the parallel placement of the one fixtures ($4.0mm{\times}11.5mm$) with reverse buttress thread on the mandibular 1st molar. Two models were loaded with 200 N magnitude in the vertical direction on the central position of the crown, the 1.5 mm and 3 mm buccal offset point from the central position of the fixture. The oblique load was applied at the angle of $30^{\circ}$ on the crown surface. Von Mises stress value was recorded and compared in the fixture-bone interface in the bucco-lingual dimension. The results were as follows; 1. The loading conditions of two internal connection implant systems (stepped and tapered type) were the main factor affecting the equivalent bone strain, followed by the type of internal connections. 2. The stepped model had more mechanical stability with the reduced max. stress compared to $11^{\circ}$ tapered models under the distributed oblique loading. 3. The more the contact of implant-abutment interface to the inner wall of implant fixture, the less stress concentration was reduced.

A Study on the Detection Characteristics in Glucose and Fabrication of Bi-Enzyme Electrode using Electrochemical Method (전기화학적 방법을 이용한 다중 효소 전극 제작 및 글루코스 검출 특성에 관한 연구)

  • Han, Kyoung Ho;Shin, In Seong;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.3
    • /
    • pp.66-72
    • /
    • 2020
  • In this study, the development of biosensors capable of bi-enzyme reactions by including Horseradish peroxidase and glucose oxidase was carried out for detection of glucose. The sensors were manufactured using electro deposition method to reduce production time, and screen printed electrodes (SPE) were used to produce economical sensors. To check the bienzyme effect, the sensor was compared and analyzed with single enzyme biosensor. The characteristics of the sensor were evaluated using scanning electron microscopy(SEM), cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS), chronoamperometry(CA), and flow injection analysis(FIA). Analysis results from SEM, CV and EIS confirmed that the enzymes are well fixed to the electrode surface. In addition, it was confirmed that bi-enzyme biosensors manufactured from the CA method improved signal performance by 200% compared to single enzyme biosensors. From this results, we were able to explain that HRP and GOD react catalyzed to each other. And the results of FIA showed that the intensity of each current signal was constant when the same concentration of glucose was injected four times. In addition, by analyzing the intensity of current signals for glucose concentrations, the biosensors manufactured in this study showed excellent trends in signal sensitivity, reproducibility and stability.

Preparation of Protein-coated Cationic Liposomes Containing Doxorubicin and Their Binding Property of Blood Plasma Protein (독소루비신을 함유하고 단백질로 수식된 양이온성 리포솜의 제조 및 혈장 단백흡착 특성)

  • Kim, Sung-Kyu;Jung, Soon-Hwa;Jung, Suk-Hyun;Seong, Ha-Soo;Chi, Sang-Cheol;Cho, Sun-Hang;Shin, Byung-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • are nanometer or micrometer scale vesicles that can be used as drug delivery carriers. However, plain liposomes are plagued by rapid opsonization, making their circulation time in bloodstream be shortened. In this study, model protein, bovine serum albumin (BSA)-coated liposomes were prepared by coating cationic liposomes with BSA molecules at higher pH than isoelectric point of BSA. The BSA molecules coated on the liposomal surface were denatured by thermal treatment at above 60oC. While both plain and cationic liposomes had about mean particle diameter of 1041 nm, BSA-coated cationic liposomes (BCL) had mean particle diameter of 1091 nm. Encapsulation of model drug, doxorubicin (DOX), in liposomes were carried out by using remote loading method and the loading efficiency of DOX to liposomes was about 90%. The mean particle diameter of BCL did not increase in blood plasma and adsorption of plasma protein was much less than plain or cationic liposomes. These results suggest that BCL can be used as a long-circulating liposomes in bloodstream.

Formulation of Alternative Non-Aqueous Cleaning Agents to Chlorofluorocarbon Compounds for Cleaning Flux, Solder and Grease (Flux, Solder 및 Grease 세정용 CFC 대체 비수계 세정제 배합 연구)

  • Jung, Young Woo;Lee, Ho Yeoul;Lee, Myoung Jin;Song, Ah Ram;Bae, Jae Heum
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.250-258
    • /
    • 2006
  • CFC compounds such as CFC-113 and 1,1,1-TCE, etc. have been used in various industries due to their excellent chemical stability, thermodynamic characteristics, non-inflammability and anti-corrosiveness. However, in oder to protect the earth environment, "the Montreal Protocol on substances that deplete the ozone layer" was adopted in 1989 for prevention of production and utilization of these CFC compounds and alternative cleaning agent have been required in the industry. The objective of this study is to develop non-aqueous cleaning agents that do not require major change of cleaning system, have excellent cleaning efficiency, are favorable to the environment, are harmless to the human body, and are not generated corrosive materials. In this work, non-aqueous cleaning agents have been formulated with glycol ether series and paraffinic hydrocarbon series with siloxane, and their physical properties and cleaning efficiencies were analyzed and compared with those of regulated materials. As a result of physical properties measurement of the formulated cleaning agents, it is expected that they may have good penetration ability into contaminated materials due to their properties with low density and low surface tension. Measurement of flash point and vapor pressure of the cleaning agents will be helpful for evaluation of their safety and working environment. The experimental results of cleaning flux, solder and grease by the formulated cleaning agents show that their cleaning abilities of soils were good and that there were no residues on the substance after cleaning. Therefore, alternative cleaning agents which have equivalent cleaning ability to regulating materials, good penetration ability and low hazard to human body, have been developed in this work.

  • PDF

Fabrication of Supercapacitors using Silver Nano Paste and Gel Electrolyte (은 나노 페이스트와 젤 전해질을 이용한 슈퍼캐패시터 제작)

  • Yoon, Seong Man;Jang, Hyunjung;Kim, Dae Won;Jang, Yunseok;Jo, Jeongdai;Go, Jeung Sang
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.410-415
    • /
    • 2013
  • The supercapacitors were fabricated using silver (Ag) nano paste and activated carbon paste on the polyimide (PI) film and 5% potassium polyacrylate (PAAK) was used for gel electrolyte. In this paper, the current collector film and the electrode film were fabricated using screen printing. The thickness of printed silver paste was $7.3{\mu}m$ and the sheet resistance has the range of $5-7m{\Omega}/square$. An activated carbon with a surface area of $1,968m^2/g$, an electronic conducting agent (SUPER P, TIMCAL) and poly (4-vinylphenol) were mixed in 2-(2-buthoxyethoxy) ethyl acetate (BCA) with a ratio of 7:1:3 to fabricate the electrode paste. To analyze electrochemical characteristics, cyclic voltammetry was performed to evaluate the stability of the devices under the voltage range of -0.5-0.5 V. The calculated specific capacitances were 44.04 and 8.62 F/g for 10 and 500 mV/s scan rates, respectively.

Electrospraying of Micro/Nano Particles for Protein Drug Delivery (단백질 약물 전달을 위한 마이크로/나노 입자의 전기분무 제조법)

  • Yoo, Ji-Youn;Kim, Min-Young;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.215-220
    • /
    • 2007
  • The control of the surface energy by electrohydrodynamic force provides electrospraying with various potential advantages such as simple particle size control, mono-dispersity, high recovery, and mild processing conditions. The advantages are quite helpful to improve the stability of protein drug and control its release. Herein, the nano-encapsulation of protein drugs using electrospraying was investigated. Albumin as a model protein was processed using uniaxial and co-axial electrospraying, and chitosan, polycaporlactone (PCL), and poly (ethylene glycol) (PEG) were used as encapsulation materials. The major processing parameters such as the conductivity of spraying liquids, flow rate, the distance of electrical potential gradient, etc were measured to obtain the maximum efficiency. In the chitosan systems, mean particles size decreases as flow rate and the distance between nozzle and the collecting part decreases. In the uniaxial technique of the PCL systems, mean particles size decreases as flow rate decreases. In the coaxial technique of the PCL systems, it was found that the particles size gets larger under the application of the higher ratio of inner-to-outer liquid flow rates. The primary particles formed out of an electrospraying nozzle showed narrow particle size distribution, but once they arrived to the collecting part, aggregation behavior was observed obviously. Efficient nano-encapsulation of albumin with PCL, PEG, and chitosan was conveniently achieved using electrospraying at above 12 kV.

A Biomechanical Comparative Analysis of the Multi-Radius Total Knee Arthroplastry System for Go up Stair and Go down Stair (계단 오르기와 내리기 동안 다축범위(multi-radius) 무릎인공관절 수술자의 운동역학적 비교분석)

  • Jin, Young-Wan;Yoo, Byung-In;Kawk, Yi-Sub
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.31-41
    • /
    • 2006
  • The primary purpose of a TKA is to restore normal knee function Therefore, ideally, a TKA should: (a) maintain the natural leverage of the knee joint muscles to ensure generating adequate knee muscle moments to accomplish daily tasks such as rising from climbing stairs; (b) provide adequate knee joint stability. A 16-channel MyoResearch XP EMG system was used to collect the differential input surface electromyography signals VM, VL, RF, BF, ST during climbing/descending stair tests. A Peak Motion Measurement System was used to collect the kinematic and kinetic data. AKIN-COM Ill isokinetic dynamometer was used for EMG of VM, VL, RF, BF and ST during maximal voluntary contraction. I Quadriceps EMG results for the VM of the passed 1year group limb demonstrated significant less RMS EMG than that of the passed 3year group limb $60^{\circ}-15^{\circ}$ of knee flexion(p<0.05). The VL of the passed 1year group limb also demonstrated significants less RMS EMG than that of the passed 3year group limb from $60^{\circ}-45^{\circ}$ of knee flexion(p<0.05). Similar to the VM and VL, the RF of the passed 1year group limb showed less RMS EMG than that of the passed 3year group limb from $60^{\circ}-30^{\circ}$ do knee flexion(p<0.05). Hamstring EMG results for the BF of the passed 1year group limb demonstrated less RMS EMG than that of the passed 3year group limb from $75^{\circ}-15^{\circ}$ of knee flexion(p<0.05). The passed 1year group limb tended to have less ADD displacement(p<0.071) than that of the passed 3year group limb. There was no significant difference of the ABD displacement between the passed 1year group and the passed 3year group limbs(p<0.73). The passed 3year group used compensatory adaptation movement strategies to compensate for the strength deficit of passed 3year group limbs. The passed 3year group limb also increased the quadriceps muscle activation level to produce more knee extension moment to compensate for the short quadriceps moment arm. The passe 3year group limb might have an unstable knee joint in the medio-Iateral direction during the climbing/descending by showing a tendency of more ADD displacement and greater hamming co-activation EMG than the passed 1year group limbs. The TKA design was not able to help the knee joint to produce adequate knee extension moment with less quadriceps muscle effort. I think that old man needs continuous exercise for muscle strength.

Preparation and Characterization of Wood Polymer Composite by a Twin Screw Extrusion (이축 압출공정을 이용한 Wood Polymer Composite의 제조 및 특성 분석)

  • Lee, Jong-Hyeok;Lee, Byung-Gab;Park, Ki-Hun;Bang, Dae-Suk;Jhee, Kwang-Hwan;Sin, Min-Cheol
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • Wood Polymer Composite (WPC) has attracted a great deal of attention in environmental industries due to renewable resources, processability, excellent physical properties and logging regulations for application to housing units and engineering construction materials. In this study, commercial WPCs were prepared by using a modular intermeshing co-rotating twin screw extruder. The effect of three main factors such as wood flour contents, coupling agent concentrations and pre-treatment of wood flour on the properties of WPCs was extensively investigated. It was found that tensile strength and thermal stability were decreased with increasing wood flour contents whereas the water absorption was increased. Addition of maleic anhydride grafted polypropylene (PP-g-MA) into WPC exhibited better physical properties. On the contrary, the water absorption was slightly decreased with PP-g-MA. Finally the sample, which was prepared with pre-treated wood flour, represented the highest tensile strength. However, the water absorption of the sample was increased due to the transition of crystalline structure of cellulose.