• Title/Summary/Keyword: Surface Run-off

Search Result 55, Processing Time 0.032 seconds

Analysis of the GIS-Based Water Cycle System for Effective Rainwater Management of Gyeongsangnam-do (경상남도의 효율적 빗물관리를 위한 GIS 기반 물순환 체계 분석)

  • Lee, Taek-Soon;Song, Bong-Geun;Han, Chi-Bok;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.82-95
    • /
    • 2011
  • The objective of this paper is to analyze the GIS-based water cycle system: rainfall, evapotranspiration, surface run-off of Gyeongsanam-do for the effective rainwater management. The rainfall(1999~2008) analyzed by a spatial interpolation method, showed relatively higher amount in Hadong-gun, Sanchung-gun, and Sacheon-gun on the southwest coast than in Changnyeong-gun, Miryang-si, and Changwon-si in the mideast inland. The evapotranspiration was calculated by the three independent variables: air temperature, landuse, and NDVI(normalized difference vegetation index). The analysis showed that Namhae-gun had the highest evapotranspiration of 93.71mm, and Jinhae-si and Changwon-si had the lowest values of 81.78mm and 84.37mm. The surface run-off was analysed by a run-off equation based on the SCS hydrologic soil classification and landuse. The amount of surface run-off showed that Hadong-gun had the highest value, of 90.40mm, and Geochang-gun had the lowest, of 46.69mm. The analysis results of the GIS-based water cycle system will be used to support the establishment of the effective rainwater management plan in Gyeongasngnam-do.

Run-off Impact Assessment of the Steeped Cornfield to Small Stream

  • Shin, Joung-Du;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;So, Kyu-Ho;Lee, Jung-Teak;Lee, Myong-Sun
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.334-340
    • /
    • 2005
  • This experiment was conducted to evaluate the nutrient loss and to assess the eutrophication into small stream by intensive rains in the steeped cornfield during cultivation. The crop cultivated was a soiling com (DW5969), and the experimental plots were divided into two parts that were 10 and 18% of slope degrees. The amount of T-N and T-P loss was calculated by analysis of surface run-off water quality, and was investigated the effect of eutrophication to small stream as a part of life cycle assessment (LCA) methodology application. For the surface run-off water quality, EC and T-N values were highest in first runoff event as compared to the other events and maintained the stage state with litter variations at every hour during the runoff period except for EC in the slope 18%. However, T-P concentration has been a transient stage after runoff event of July 27. Total surface run-off ratio was not significantly different with slope degrees, but amount of T-N and T-P losses at 18% of slope were high as $5.96kg\;ha^{-1}\;and\;0.65kg\;ha^{-1}$ as relative to 10% of slope degree, respectively. Furthermore, T-N losses from run-off water in the sloped cornfield 10 and 18% were approximately 9.8 and 12.5% of the N applied as fertilizer when the fertilizer applied at recommended rates after soil test, respectively. For the eutrophication impact to the small stream, it was shown that $PO_4$ equivalence and Eco-indicator value at 18% of slope degree were greater as much $6.11kg\;ha^{-1}$ and 0.81 as compared to the slope angle 10%, respectively. Therefore, it was appeared that each effect of nutrient losses, eutrophication and Eco-indicator value was enhanced according with higher slope degree.

Comparison of Water Infiltration and Retention Capacity in a Forest Soil of Different Surface Depression Patterns (지면 굴곡에 따른 산림 토양의 물 침투와 저류능력 비교)

  • Cho, Yoori;Kim, Jongho;Lee, Dowon
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.1
    • /
    • pp.108-111
    • /
    • 2018
  • Increasing soil surface roughness can be effective in enhancing infiltration of rainfall and depression storage capacity of forest soil and reducing surface run-off. In this study, a forest slope with hemispherical depressions shows greater infiltration of water, whereas depression storage capacity is higher in soil with depressions perpendicular to a water flow pathway. Soil pitting or forming surface depressions can be used as a countermeasure after forest fires and a practical way to reduce drought stress of forest soil.

Some Remarkable Earth Surface Processes under the Morpho-climatic regime of Mongolian Steppe Zone (기후지형학 관점에서 본 몽골 스텝지역의 지형형성작용 특색)

  • OH, Kyong-Seob;YANG, Jae-Hyuk;CHO, Heon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.3
    • /
    • pp.121-129
    • /
    • 2011
  • This work is to elucidate in typological aspect main geomorphological processes in the morphogenetic system of Mongolian steppe zone. Its morphogenesis manifest interaction of intense gelifraction and active erosion either by slope run-off or by wind. Intense gelifraction owes both to cold temperature regime with great amplitude, and to moisture associated with snow fall. Erosion of material produced by gelifraction is assured by surface run-off of summer rainfall and spring eolian activities. The geomorphological landscape sculptured by such morphogenetic processes manifest low-relief smooth slopes. This feature reveals that intense gelifraction keeps abreast with removal of weathering product by surface run-off and wind.

Studies on the Effects of Several Factors on Soil Erosion (토양침식(土壤侵蝕)에 작용(作用)하는 몇가지 요인(要因)의 영향(影響)에 관(關)한 연구(硏究))

  • Woo, Bo Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.29 no.1
    • /
    • pp.54-101
    • /
    • 1976
  • This study was conducted on the major factors affecting soil erosion and surface run-off. In order to investigate the processes and mechanisms of soil erosion on denuded forest-land in Korea, and to systematize the magnitudes of influences and interactions between individual factors, the five major factors adopted in these experiments are soil textures (coarse sand and clay loam), slope steepness ($10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $40^{\circ}$), rainfall intensities (50, 75 and 100mm/hr), slope mulching methods (bare, coarse straw-mat mulching, grass mulching and anti-erosion liquid mulching) and vegetation densities (sparse, moderate and dense). The processes and mechanisms of soil erosion, and the effects of mulchings on soil erosion as well as surface run-off rates were studied algebraically with four parts of laboratory experiments under the simulated rainfall and another part of field experiment under the natural rainfall. The results in this study are summarized as follows: 1. Experiment factors and surface run-off rates The surface run-off rates under the natural rainfall were resulted about 24.7~28.7% from the bare slopes, about 14.0~16.4% from the straw-mat mulched slopes, about 7.9~9.1% from the liquid mulched slopes, and about 5.6~7.2% from the grass mulched slopes respectively. The surface run-off rates under the simulated rainfall differed greatly according to the rainfall intensity and the mulching method. 2. Magnitudes of influences and interactions of the individual factor on the surface run-off rates. The experimental analyses on the major factors(soils, slopes, rainfalls, mulchings and vegetations) affecting the rates of surface run-off, show that the mean differences of surface run-off rate are significant at 5% level between the soil texture factors, among the slope steepness factors, among the rainfall intensity factors, among the mulching method factors, and among the vegetation density factors respectively. The interactions among the individual factor have a great influence(significant at 1% level) upon the rate of surface run-off, except for the interactions of the factors between soils and slopes; between slopes and vegetations; among soils, slopes and rainfalls; and among soils, slopes and mulchings respectively. On the bare slopes under the simulated rainfall, the magnitude of influences of three factors(soils, slopes and rainfalls) affecting the rate of surface run-off is in the order of the factor of rainfalls, soils and slopes. The magnitude of influences of three factors (soils, rainfalls and mulchings) affecting the rate of surface run-off, on the mulched slopes under the simulated rainfall is in the order of the factor of mulchings, rainfalls and soils and that of influences of the factor of soils, slopes and mulchings is in the order of the factor of mulchings, soils and slopes. On the vegetation growing slopes under the simulated rainfall, the magnitude of influences of three factors (soils, slopes and vegetations) affecting the rate of surface run-off is in the order of the factor of vegetations, soils and slopes. In the same condition of treatments on the field experiment under the natural rainfall, the order of magnitude of influences affecting the rate of surface run-off is the factor of mulchings, soils and slopes. 3. Experiment factors and soil losses The soil losses of the experiment plots differed according to the factors of soil texture, slope steepness, rainfall intensity and mulching method. The soil losses from the coarse soil were increased about 1.1~1.3 times as compared with that of fine soil under the natural rainfall, while the soil losses from the fine soil were increased about 1.2~1.3 times compared with that of coarse soil under the simulated rainfall. The equation of $E=aS^b$ (a, b are constant) between the slope steepness (log S) and soil losses (log E) under the simulated rainfall were developed. The equation of $E=aI^b$ (a, b are constant) between the rainfall intensity (log I) and soil losses (log E) were developed, and b values have a decreasing tendency according to the increase of the slope steepness and rainfall intensity. The soil losses under the natural rainfall were appeared about 38~41% from the coarse straw-mat mulched slopes, about 20~22% from the liquid mulched slopes, about 14~15% from the grass mulched slopes as compared with that of the bare slopes respectively. The soil loss from the vegetation plots showed about 7.1~16.4 times from the sparse plot, about 10.0~17.9 times from the moderate plot and about 11.1~28.1 times from the dense plot as compared with that of the bare slopes. 4. Magnitudes of influences and interactions of the individual factor on the soil erosion. The experimental analyses on the major factors(soils, slopes, rainfalls, mulchings and vegetations) affecting the soil erosion, show that the mean differences of soil losses are highly significant between the soil texture factors, among the slope steepness factors, among the rainfall intensity factors, among the mulching method factors and among the vegetation density factors respectively. The interactions among the individual factor have mostly great influences upon the soil erosion. The magnitude of influences of three factors (soils, slopes and rainfalls) affecting the soil erosion on the bare slopes under the simulated rainfall is in order of the factor of rainfalls, soils and slopes. On the mulched slopes under the simulated rainfall, the magnitude order of influences of three factors(soils, rainfalls and mulchings) affecting the soil erosion is the factor of mulchings, rainfalls and soils, and the order of influences of factor of soils, slopes and mulchings is the factor of mulchings, soils and slopes. On the vegetation growing slopes under the simulated rainfall, the magnitude of influences of three factors (soils, slopes and vegetations) affecting the soil erosion is in the order of the factor of slopes. vegetations and soils. In the same condition of treatments on the field experiment under the natural rainfall, the order of magnitude of influences of three factors (soils, slopes and mulchings) affecting the soil erosion is the factor of mulchings, of slopes and of soils.

  • PDF

Soil Erosion From Slope Land at Early Stage of Grasses for Development of Mountainous Area (산지개발을 위한 경사도별 초지조성초기의 토양유실량측정시험)

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.71-81
    • /
    • 1989
  • Soil erosion was investigated to find out difference in amount of soil eroded from slope land at early stage of young grasses and at later stage with sufficient cover with different slopes. The six experimental plots were formed on 8$^{\circ}$, 10$^{\circ}$, 15$^{\circ}$, 20$^{\circ}$, and 25$^{\circ}$, with 2m width and 20m length located at the Hwak Kok Ri, Chun Sung Gun, Kang Weon Do. The amount of soil eroded and run-off were collected from 1. May 1987. to 30. October 1988, growing with grasses sowed 2. September 1987. The results were as follows : 1. The amount of soil eroded from the plots except 8$^{\circ}$ plot exceeded the allowable soil erosion with 14 ton/ha during the land formuing before establishment of sufficient surface cover with grasses. Therefore, proper soil conservation practice should be recommeneed. 2. The amount of soil eroded increased exponentially with increased slope as 1.24 times for 15$^{\circ}$1.65 times for 20*, and 2.94 times for 25$^{\circ}$, m comparing with standared 10$^{\circ}$ polt. 3. The erosion occurred mainly by high density of rainfall exceeding lOOmm as consecutive precipitation during the raining peried or accompanied by typhoon passing. 4. The significant soil erosion, when the land covering ratio was over 95% after seeding of grass, was recorded only by the single continuous storms over lOOmm of concentrated precpitation, of which amounts were 1/73~/250 of the allowable soil erosion. 5. The amount of soil erosion from the plots with sufficient surface cover with grasses increased as the slope increased however the amounts were small enough to be neglected. 6. Desolation by soil erosion would be minor problem up to the slope of 20$^{\circ}$ when the mountainous area developed to the grassland with sufficient cover. But it could be concerned on the turn to the hare land by the treading of livestocks with the land slope over 25$^{\circ}$. 7. The run-off of rainfall increased by the increament of slope but it was not exponentially increased. 8. The run-off of rainfall after seeding of grass reduced by 20% in comparison with the run-off of rainfall before seeding, which might be due to infiltration of rainfall promoted by the grass roots.

  • PDF

A Study on the Roll Manufacturing Technology Applying Powder Flame Spray Coating Technology of Ni-Based Alloy Powder (Ni계 합금분말 용사 코팅기술을 적용한 롤 제조기술 연구)

  • Park, Ji Woong;Kim, Soon Kook;Ban, Gye Bum
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.123-131
    • /
    • 2022
  • The purpose of this study is to improve the mechanical properties and develop manufacturing technology through self-soluble alloy powder flame spray coating on the surface of a run-out table roller for hot rolling. The roller surface of the run-out table should maintain high hardness at high temperatures and possess high wear, corrosion, and heat resistances. In addition, sufficient bonding strength between the thermal spray coating layer and base material, which would prevent the peel-off of the coating layer, is also an important factor. In this study, the most suitable powder and process for roll manufacturing technology are determined through the initial selection of commercial alloy powder for roll manufacturing, hardness, component analysis, and bond strength analysis of the powder and thermal spray coating layer according to the powder.

A Cooling Method which Reduces the Tangential Tensile Stresses on a Work Roll Surface during Hot Slab Rolling (열연 슬라브 압연에서 워크롤 표면 원주방향 인장응력 감소를 위한 냉각 방법)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.58-66
    • /
    • 2012
  • The work roll surface temperature rises and falls repetitively during hot slab rolling because the work roll surface is cooled continuously by water. This study focused on Std. No. 7 to determine a cooling method which significantly reduces the tangential tensile stresses on the work roll surface of the hot slab mill at Hyundai Steel Co. in Korea. A series of finite element analyses were performed to compute the temperature distribution and the tensile stresses in the circumferential direction of the work roll. The virtual slab model was used to reduce the run time considerably by assigning a high temperature to the virtual slab. Except for the heat generated by plastic deformation, this is equivalent to the hot rolling condition that a high temperature slab (material) would experience when in contact with the work rolls. Results showed that when the virtual slab model was coupled with FE analysis, the run time was found to be reduced from 2000 hours to 70 hours. When the work roll surface cooled with a certain on-off patter of water spray, the magnitude of the tangential stresses on the work rolls were decreased by 54.1%, in comparison with those cooled by continuous water spraying. Savings of up to 83.3% in water usage are possible if the proposed water cooling method is adopted.

Study of Sloshing Flow in a Rectangular Tank (사각용기의 슬로싱 유동에 관한 연구)

  • Ji, Young-Moo;Shin, Young-Seop;Park, Jun-Sang;Hyun, Jae-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.617-624
    • /
    • 2011
  • The two-dimensional sloshing problem in a rigid rectangular tank with a free surface is considered. The flow is generated by a container in harmonic motion in time along the horizontal axis, i.e., a container excited by u=Asin($2{\pi}ft$) where u denotes the container velocity imposed externally, A is the amplitude of the oscillation velocity, and f is the frequency of oscillation. Experimental apparatus is arranged to investigate the large-amplitude sloshing flows in off-resonant conditions, where the large amplitude means that A~O(1), and the distance, S, is comparable to the breadth, L, of the container, i.e., L/S~O(1). Comprehensive particle image velocimetry (PIV) data are obtained, which show that the flow physics of the nonlinear off-resonant sloshing problem can be characterized into three peculiar free surface motions: standing-wave motions similar to those of linear sloshing, a run-up phenomenon along the vertical sidewall at the moment of turn-over of the container, and gradually propagating bore motion from the sidewall to the interior fluid region, like a hydraulic jump.

Estimation of Ponding Times for various Soil Textures and Ponding Depths -Using the Green-Ampt Infiltration Model- (토성별 특정 수심의 저류된 유출수의 지하침투 소요시간 산정에 관한 연구 -Green-Ampt 방정식 적용을 중심으로-)

  • 권경호;안동만
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.5
    • /
    • pp.170-180
    • /
    • 2000
  • The surface-drainage system, which consists of bio-swale and detention-infiltration Basins and carries out the function of temporary detention-infiltration of runoff, is defined as the "natural drainage system". It is an environmentally sound and economically beneficial practice to reduce run-off by retaining it in swales as much as possible and letting run-off infiltrate into the ground. In order to estimate appropriate capacity of swales, it is necessary to know how long will it take for certain depths of water to infiltrate. The ponding times, or infiltration times, of various depths and of various soil textures, could be estimated with the Green-Ampt Infiltration Model. Included soil textures are loamy sand, sandy loam, loam, silty loam, sandy clay loam and clay loam. Ponding depths are from 10cm to 100cm intervals. Newton-Raphson method is used for the solution of the Green-Ampt equation by a computer program. The computer program was written with the FORTRAN Developer 4.0 v.. Selected ponding depth is acceptable when the sum of the ponding time and the breeding time of mosquitoes is less than the tolerance period of innundation of grasses and trees.and trees.

  • PDF