• Title/Summary/Keyword: Surface Roughness(표면조도)

Search Result 373, Processing Time 0.027 seconds

Effects of the Surface Roughness of a Graphite Substrate on the Interlayer Surface Roughness of Deposited SiC Layer (SiC 증착층 계면의 표면조도에 미치는 흑연 기판의 표면조도 영향)

  • Park, Ji Yeon;Jeong, Myung Hoon;Kim, Daejong;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.122-126
    • /
    • 2013
  • The surface roughness of the inner and outer surfaces of a tube is an important requirement for nuclear fuel cladding. When an inner SiC clad tube, which is considered as an advanced Pressurized Water Cooled Reactor (PWR) clad with a three-layered structure, is fabricated by Chemical Vapor Deposition (CVD), the surface roughness of the substrate, graphite, is an important process parameter. The surface character of the graphite substrate could directly affect the roughness of the inner surface of SiC deposits, which is in contact with a substrate. To evaluate the effects of the surface roughness changes of a substrate, SiC deposits were fabricated using different types of graphite substrates prepared by the following four polishing paths and heat-treatment for purification: (1) polishing with #220 abrasive paper (PP) without heat treatment (HT), (2) polishing with #220 PP with HT, (3) #2400 PP without HT, (4) polishing with #2400 PP with HT. The average surface roughnesses (Ra) of each deposited SiC layer are 4.273, 6.599, 3.069, and $6.401{\mu}m$, respectively. In the low pressure SiC CVD process with a graphite substrate, the removal of graphite particles on the graphite surface during the purification and the temperature increasing process for CVD seemed to affect the surface roughness of SiC deposits. For the lower surface roughness of the as-deposited interlayer of SiC on the graphite substrate, the fine controlled processing with the completed removal of rough scratches and cleaning at each polishing and heat treating step was important.

A Study on the Improvement of Polishing Surface Roughness using Polishing Machine with Constant pressure (정압 폴리싱 머신에 의한 연마면조도 향상에 관한 연구)

  • 정윤교;조종래;윤상대;김남경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.139-144
    • /
    • 2004
  • This polishing machine has many advantages to polish complicated shaped molds due to spindle header with constant pressure. But, because of new polishing machine, there is no study of the standardization of polishing by polishing conditions yet. So we want to know the relation between polishing conditions(a kind of tool, grain size) and surface roughness. The result of experimental was obtained surface roughness of 0.061${\mu}{\textrm}{m}$ Ry in case of using wood tool and grain of 6${\mu}{\textrm}{m}$ diamond.

  • PDF

Development of Surface Finishing Methodology for the Laminated Pattern Removal of VLM-ST Parts (VLM-ST 시작품의 적층무늬 제거를 위한 표면처리 방법론 개발)

  • Lee Sang-Ho;Kim Hyo-Chan;Song Min-Sup;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.202-209
    • /
    • 2005
  • A new effective thick-layered RP process, Transfer-type Variable Lamination Manufacturing using expandable polystyrene foam (VLM-ST) has been developed with thick layers and sloped surfaces. VLM-ST has the innate advantages by virtue of its working principle: high building speed, low cost for introduction and maintenance of VLM-ST apparatus, little staircase surface irregularities of parts. Despite these advantages in VLM-ST, the surface roughness of VLM-ST parts is still inadequate to be used as RP master patterns for rapid tooling (RT). This paper describes the systematic and effective methodology to remove the laminated pattern and improve the surface roughness for VLM-ST parts. From the results of surface finishing of VLM-ST parts, it can be seen that the laminated pattern is completely removed and the surface characteristics such as surface roughness, surface hardness, and paintability are improved.

Study on the Machinability of Pinus densiflora at Chunyang District for Wood Patterns - Cutting Force, Surface Roughness and Suface Phenomenon by Face Milling - (목형용(木型用) 춘양목(春陽木)의 절삭가공(切削加工) 특성(特性)에 관(關)한 연구(硏究)(제2보(第2報)) - 정면(正面)밀링 절삭(切削)에 의한 절삭저항(切削抵抗), 표면조도(表面粗度) 및 가공표면상태(加工表面狀態) -)

  • Kim, Jeong-Du
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.61-69
    • /
    • 1988
  • Recently the automization of wood manufacturing and the development of CNC machine tools becomes the center of interest. Cutting mechanism, tool wear and the roughness of machined surface have been studied. In the studies about wood for special uses, concrete data of cutting is desired. While Pinus densiflora is characterized that heartwood develops as age increases, Chunyang District has the characteristic of strength, red color, relatively regular chap and high heartwood - percentage. But there is no data about cutting this wood, Chunyang District. In this study face milling by sintered carbide tool was excuted to Chunyang District. Cutting force, Surface roughness and states were investigated with regard to cutting speed. Example results were as follows; 1) Mean cutting resistance against lateral component force and longitudinal component force decreased rapidly up to cutting speed of 155 m/min, and remains constant above this speed. 2) The surface roughness of cutting surface lowered as cutting speed increased, regardless of fiber formation. Radial rougness of fiber is larger than lineal surface roughness. 3) Increase in Cutting speed made machining mark restrained. Down-milling showed larger marks than up-milling.

  • PDF

Prediction of the Machined Surface Roughness using Geometrical Characteristic Lines (기하학적 특징선을 이용한 밀링 가공면의 표면 조도 예측)

  • 정태성;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.66-69
    • /
    • 2003
  • This paper presents the procedures for the evaluation of the maximum surface roughness and the shapes of the cut remainder employing the ridge method. The shapes and the heights of the cut remainder are estimated by overlapping adjacent ridges in consideration of the various machining parameters: the feedrate. the path interval. The maximum surface roughness in plane cutting modes are derived as a function of the maximum effective cutter radius, R$\_$eff,max/. and the path interval ratio, $\tau$$\_$fp/, The predicted results are compared with the values estimated by the conventional roughness model.

  • PDF

Effects of Machining Conditions for Improvement of Surface Roughness on Micro End-Milling (마이크로 엔드밀 가공시 가공인자가 표면거칠기 향상에 미치는 영향)

  • Cho, Byoung-Moo;Kim, Sang-Jin;Park, Hee-Sang;Bae, Myung-Il
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.71-76
    • /
    • 2008
  • Micro end-milling is one of effective technology that is able to do ultra-precision machining while increasing the productivity and has wide application field. But selection of machining condition is very difficult because of complicated machining mechanism. Therefore this study was carried out to select working factors to get the optimum surface roughness. Machining condition are depth of cut, feed rate and spindle revolution. The result of this study showed that Surface roughness was affected, in the other of depth of cut, spindle revolution, feed rate. And this study provided an regression equation relating surface roughness to working factors through Regression Analysis and determination coefficient of regression equation had a satisfactory reliability of 79%.

Quality Changes in Concrete According to the Number of Use of Aluminum Form Surface Coating Material (알루미늄 거푸집 표면코팅재의 전용횟수에 따른 콘크리트의 품질변화)

  • Lee, Il-Sun;Park, Byung-Kwan;Baek, Dae-Hyun;Park, Jae-Soon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.123-126
    • /
    • 2009
  • This study is analyzed the effects of the number of use of aluminum form surface coating material on surface quality of concrete. The results can be summarized as follows. Surface roughness showed larger values with increase in the number of use. Values were larger in UP and AL compared to PE. While found to have bad influence on concrete surface quality, PA and W showed most excellent values for roughness. The number of surface pores increased with increasing number of use, and the number of pores on concrete surface was reduced by applying a remover. In terms of type of surface coating material, PA and W showed smallest number of pores in comparison to PE. In order to comprehensively improve surface quality of concrete, parallel use of PA coating material and remover is deemed most appropriate.

  • PDF

Analysis of Machined Surfaces by Ball-end Milling using the Ridge Method (능선 궤적법을 이용한 볼엔드밀 가공면 해석)

  • 정태성;남성호;박진호;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.51-60
    • /
    • 2004
  • Ball-end milling is one of the most common manufacturing processes for the parts with sculptured surface. However, the conventional roughness model is not suitable for the evaluation of surface texture and roughness under highly efficient machining conditions. Therefore, a different approach is needed for the accurate evaluation of machined surface. In this study, a new method, named ‘Ridge method’, is proposed for the effective prediction of the geometrical roughness and the surface topology in ball-end milling. Theoretical analysis of a machined surface texture was performed considering the actual trochoidal trajectories of cutting edge. The characteristic lines of cut remainder are defined as three-types of ‘Ridges’ and their mathematical equations are derived from the surface generation mechanism of ball-end milling process. The predicted results are compared with the results of conventional method. The agreement between the results predicted by the proposed method and the values calculated by the simulation method shows that the analytic equations presented in this paper are useful for evaluating a geometrical surface roughness of ball -end milling process.

Experimental Study on Effect of TiN - Coating on a Cold Forging in Surface Characteristics (냉간단조 공정에서 TiN 코팅이 제품의 표면특성에 미치는 영향에 관한 실험적 연구)

  • Kim Hae Ji;Lee Sang Wook;Kang Sang Myoung;Joun Byung Yun;Joun Man Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.47-52
    • /
    • 2005
  • In this paper, the effect of TiN-coating on product quality such as dimensional accuracy and surface roughness is experimentally investigated. A punch of SKD11 material in cold forging an automotive bearing shaft and its related process found in a cold forging company are selected as the test example. The effect of TiN-coating is revealed in a quantitative manner. It is to be noted that TiN-coating is effective in controlling the dimensional accuracy and surface roughness as well as in increasing tool lift.

Effect of TiN-Coating on a Punch on Surface Quality of a Cold Forging Automotive Bearing Shaft (냉간 단조용 펀치의 TiN 코팅처리에 따른 자동차 베어링축의 표면 영향에 관한 연구)

  • Kim H.J.;Lee S.W.;Kang S.M.;Joun B.Y.;Joun M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.143-147
    • /
    • 2004
  • In this paper, effect of TiN-coating on product quality such as dimensional accuracy and surface roughness is experimentally investigated. A punch of SKD11 material in cold forging of an automotive bearing shaft and its related process found in a cold forging company ate selected as the test example. The effect of TiN-coating is revealed in a quantitative manner. It is to be noted that TiN-coating is effective in controlling the dimensional accuracy and surface roughness as well as in increasing tool lift.

  • PDF