• Title/Summary/Keyword: Surface Roughness(표면조도)

Search Result 374, Processing Time 0.027 seconds

Application of Response Surface Methodology for Modeling and Optimization of Surface Roughness and Electric Current Consumption in Turning Operation (선삭 작업에서 표면조도와 전류소모의 모델링 및 최적화를 위한 반응표면방법론의 응용)

  • Punuhsingon, Charles S.C.;Oh, Soo-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.56-68
    • /
    • 2014
  • This paper presents an experiment on the modeling, analysis, prediction and optimization of machining parameters used during the turning process of the low-carbon steel known as ST40. The parameters used to develop the model are the cutting speed, the feed rate, and the depth of the cut. The experiments were carried out under various conditions, with three level of parameters and two different treatments for each level (with and without a lubricant), to determine the effects of the parameters on the surface roughness and electric current consumption. These effects were investigated using response surface methodology (RSM). A second-order model is used to predict the values of the surface roughness and the electric current consumption from the results of experiments which collected preliminary data. The results of the experiment and the predictions of the surface roughness and electric current consumption under both treatments were found to be nearly identical. This result shows that the feed rate is the main factor that influences the surface roughness and electric current consumption.

Analysis on the Surface Roughness in Workpiece Considering Cutting Conditions (절삭조건을 고려한 공작물의 표면조도 해석)

  • Kim, Seong-Geol;Kim, Seock-Hyun
    • Journal of Industrial Technology
    • /
    • v.14
    • /
    • pp.109-117
    • /
    • 1994
  • To satisfy the requirement for the precision and productivity of machine tools, we need the technique to predict the surface roughness of workpiece under various cutting conditions. The surface roughness is mainly influenced by the ideal roughness i. e., the roughness by feeding quantity and geometry of the tool. In this paper, the surface roughness is divided into three zones and the mathematical models of the three zones are obtained, in consideration of the feeding conditions and tool geometry. Using the mathematical models, we developed a program to calculate the maximum feeding quantity satisfying the required surface roughness of the workpiece. The program is used to calculate the maximum feed for two kinds of the bites used under the real cutting condition.

  • PDF

Characteristics of Tool Wear and Surface Roughness using for Hybrid Lubrication in Micro-Milling Process of Flexible Fine Die (플렉서블 양각금형의 마이크로 밀링가공에서 하이브리드 윤활공정에 따른 공구마멸과 표면조도 특성)

  • Kim, Min-Wook;Ryu, Ki-Teak;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.30-36
    • /
    • 2013
  • An FFD(flexible fine die) is an embossed mold that consists of a thin plate ranging from 0.6 to 3 mm in thickness. FFDs are primarily used for cutting LCD films and F-PCB sheets. In the high-speed micro-milling process of flexible fine dies, the lubrication and cooling of the cutting edges is very important from the aspect of eco machining and cutting performance. In this paper, a comparative study of tool wear and surface roughness between cutting fluid and hybrid lubrication for eco-machining of FFD was conducted for processes of high-speed machining of highly hardened material (STC5, HRC52). Especially, the incorporated fluid method for eco machining, in which the cutting performances can be simultaneously measured, was introduced. The machining results show that hybrid lubrication, instead of conventional cutting fluid, leads to excellent tool wear and surface roughness and represents the proper conditions for eco micro-machining of flexible fine dies.

A Study on the Surface Roughness Characteristics by using SNCM616 Alloy Still (SNCM616 합금강을 이용한 표면조도 특성에 관한 연구)

  • Choi, Chul-Woong;Kim, Yong-Kyoung;Kim, Jin-Su;Shin, Mi-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.607-613
    • /
    • 2019
  • In this study, we investigate the effect of SNCM616 alloy steel, which is commonly used in industry, such as rotors and crank-shafts, on the surface roughness of CNC HBM with Ø25 mm, 8-blade reamer to objective is to analyze and present optimal cutting conditions. The higher the feedrate for the spindle speed, the rougher the surface roughness. The surface roughness was found to be better when the feed rate was lower. The resultant value of the most accurate surface roughness is Ra 0.756 ㎛, and the optimal cutting conditions are 25 rpm at spindle speed and 20 mm/min at transfer speed.

The Effect of Surface Roughness on the Zero Pressure Gradient Turbulent Boundary Layers (영압력 구배 난류 경계층에서 표면조도가 미치는 영향)

  • Kim Moon-Kyung;Yoon Soon-Hyun;Kim Dong-Keon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.453-460
    • /
    • 2005
  • Experiments were conducted to investigate the effect of the surface roughness on the flat plate turbulent boundary layer. The square rods were installed at the leading edge to make surface roughness. The particle image velocimetry was used to measure the mean velocities and velocity fluctuation component. All measurements were made over a range of w/k=1. 2 5 and $Re_x=80.000{\sim}360,000$. Friction velocity was measured by using Clauser plot method. The level of turbulent intensities on roughness surface appears more strongly than that of turbulent intensities on flat plate. A correlation of boundary layer thickness in term of $Re_x$ and w/k are presented.

A Study on Improving the Surface Roughness of Stereolithography Parts (광조형물의 표면조도 향상에 관한 연구)

  • 안대건;김호찬;정해도;이석희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.196-203
    • /
    • 2004
  • SL(Stereolithography) part is made by piling up thin layers which causes the stair stepping effect at the surface of SL parts. The effect brings about excessive surface roughness and cuts down the merits of using SL part. Hence, additional post-machining finishing such as traditional grinding is required. But the traditional post-machining is detrimental to part geometry and time consuming. In this study, therefore, a paraffin coating and grinding post-machining is newly proposed to improve the surface quality of SL fart. The paraffin which has suitable properties for the proposed post-machining is coated all over the part surface. By grinding the only over-coated paraffin based on boundary of the SL part surface, the surface roughness can be improved without any damage on the part. Also, it is verified that SL part finished by the proposed post-machining process can be applied for rapid tooling as pattern through manufacturing silicon rubber molding and casting test.

Changes in surface roughness of bracket and wire after experimental sliding - preliminary study using an atomic force microscopy (브라켓과 탄선 간의 마찰 전후 표면 변화 분석 - 원자현미경을 이용한 예비연구)

  • Lee, Tae-Hee;Park, Ki-Ho;Jeon, Ji-Yun;Kim, Su-Jung;Park, Hun-Kuk;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.40 no.3
    • /
    • pp.156-166
    • /
    • 2010
  • Objective: The surface roughness of orthodontic materials is an essential factor that determines the coefficient of friction and the effectiveness of tooth movement. The aim of this study is to evaluate the surface roughness change of the brackets and wires after experimental sliding quantitatively. Methods: Before and after experimental sliding tests, the surface roughness of stainless steel brackets, ceramic brackets, stainless steel wires, and beta-titanium (TMA) wires were investigated and compared using atomic force microscopy (AFM). Results: After sliding tests, changes in the surface of the wire were greater than changes in the bracket slot surface. The surface roughness of the stainless steel bracket was not significantly increased after sliding test, whereas the roughness of ceramic brackets was decreased. Both the surface roughness of stainless steel and TMA wires were increased after sliding test. More changes were observed on the ceramic bracket than the stainless steel bracket. Conclusions: AFM is a valuable research tool when analyzing the surface roughness of the brackets and wires quantitatively.

Effects of Surface Roughness on Contact Angle of Nanofluid Droplet (표면조도가 나노유체 액적의 접촉각에 미치는 영향)

  • Kim, Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.559-566
    • /
    • 2013
  • The effects of solid surface roughness on the contact angle of a nanofluid droplet were experimentally investigated. The experiments were conducted using the solid surface of a 10 mm cubic copper block and the nanofluid of water mixed with CuO nanoparticles. The experimental results showed that the contact angles of nanofluid droplets were lower than those of water droplets and that the contact angle of the nanofluid droplet increased with the solid surface roughness. Furthermore, it was found that the contact angles of water droplets on the solid surface quenched by both water and the nanofluid were lower than those of water droplets on the pure solid surface. However, significant differences were not observed between the contact angles on the solid surfaces quenched by water and the nanofluid.

Indirect Method for Measurement of Tool Edge Roughness in flat End Mill (평 엔드밀 공구인선부 조도의 간접적인 측정법)

  • Kim, Jeon-Ha;Gang, Myeong-Chang;Kim, Jeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.92-98
    • /
    • 2002
  • End mill is an essential tool to generate complex surface in workpiece and it has been developed with various materials and tool shapes. The most important factor to evaluate the performance of end mill is still the wear characteristics of flank face. In addition to the flank wear, the tool edge roughness generated by the chipping is another important factor in aspects of material property and machinability evaluation and affects the quality of machined surface. Up to now, there is no direct method for measurement of tool edge roughness. In this study, the tool edge roughness of flat end mill is indirectly measured along the axial direction of workpiece. The theoretical equation is derived in consideration of tool geometry. Finally, the optimal conditions to measure the tool edge roughness by the proposed method are presented through the theoretical review and experimental identification.