• Title/Summary/Keyword: Surface Robot

Search Result 421, Processing Time 0.028 seconds

Motion Planning for Mobile Robots Using a Spline Surface

  • Kato, Kiyotaka;Tanaka, Jyunichi;Tokunaga, Hironori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1054-1059
    • /
    • 2005
  • The artificial potential method uses a potential field to guide a robot from a start to a goal configuration respectively. The potential field consists of attractive potential used to pull a robot toward a goal and repulsive potential to keep it away from obstacles. However, there are two problems concerning local minimum and computational cost to be resolved in conventional artificial potential methods. This study proposes a method utilizing a spline surface that interpolates arbitrary boundaries and a domain reduction method that reduces the unnecessary area. The proposed spline surface interpolates arbitrary shaped boundaries and is used as an artificial potential to guide a robot for global motion planning of a mobile robot. A reduced domain process reduces the unnecessary domain. We apply a distance-weighted function as such a function, which blends distances from each boundary with a reduction in computational time compared with other analytical methods. As a result, this paper shows that an arbitrary boundary spline surface provides global planning and a domain reduction method reduces local minimum with quick operation.

  • PDF

Analysis and Implementation of Traveling Surface Characteristics Test Equipment Using Optical Mice (광 마우스 기반 주행 표면 특성 시험 장치의 분석 및 구현)

  • Kim, Sungbok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.543-551
    • /
    • 2016
  • This paper presents the analysis and implementation of traveling surface characteristics test equipment using optical mice in connection with the velocity estimation of a mobile robot equipped with optical mice. In the traveling surface characteristics test equipment, a traveling surface sample is made to rotate toward stationary optical mice instead of a mobile robot equipped with optical mice moving over a traveling surface. First, the conceptual design and operational principle of the traveling surface characteristics test equipment is explained. Second, the velocity kinematics of the traveling surface characteristics test equipment is formulated; based on this, the parameter setting of the traveling surface characteristics test equipment is described. Third, the implementation of the traveling surface characteristics test equipment is described in detail, including the mechanical design and construction and the hardware and software development. Fourth, using the prototype of the traveling surface characteristics test equipment, the experimental results of the statistical parameter extraction for different traveling surface samples are given. Finally, some potential usages of the traveling surface characteristics test equipment are discussed.

Development of a magnetic caterpillar based robot for autonomous scanning in the weldment (용접부 자동 탐상을 위한 이동 로봇의 개발)

  • 장준우;정경민;김호철;이정기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.713-716
    • /
    • 2000
  • In this study, we present a mobile robot for ultrasonic scanning of weldment. magnetic Caterpillar mechanism is selected in order to travel on the inclined surface and vertical wall. A motion control board and motor driver are developed to control four DC-servo motors. A virtual device driver is also developed for the purpose of communicating between the control board and a host PC with Dual 'port ram. To provide the mobile robot with stable and accurate movement, PID control algorithm is applied to the mobile robot control. And a vision system for detecting the weld-line are developed with laser slit beam as a light source. In the experiments, movement of the mobile robot is tested inclined on a surface and a vertical wall.

  • PDF

Development of Mobile Robot for CAS inspection of Oil Tanker (유조선의 상태평가계획 검사를 위한 이동로봇의 개발)

  • Lee, Seung-Heui;Son, Chang-Woo;Eum, Yong-Jae;Lee, Min-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.161-167
    • /
    • 2007
  • It is dangerous that an inspector overhauls defects and condition of the inner parts of an oil tanker because of many harmful gases, complex structures, and etc. However, these inspections are necessary to many oil tankers over old years. In this study, we proposed the design of mobile robot for inspection of CAS in oil tanker. The developed CAS inspection mobile robot has four modules, a measurement module of oil tanker's thickness, a corrosion inspection module, a climbing module of the surface on a wall, and a monitoring module. In order to get over at a check position, the driving control algorithm was developed. Magnetic wheels are used to move on the surface of a wall. This study constructed a communication network and the monitoring program to operate the developed mobile robot from remote sites. In order to evaluate the inspection ability, the experiments about performance of CAS inspection using the developed mobile robot have been carried out.

  • PDF

A study on the improvement of performance of polishing robot attached to machining center (머시닝센터 장착형 연마 로봇의 성능 향상에 관한 연구)

  • 조영길;이민철;전차수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1275-1278
    • /
    • 1997
  • Cutting process has been automated by progress of CNC and CAD/CAM, but polishing process has been depended on only experiential knowledge of expert. To automate the polishing pricess polishing robot with 2 degrees of freedom which is attached to a machining center with 3 degrees of freedom has been developed. this automatic polishing robot is able to keep the polishing tool normal on the curved surface of die to improve a performance of polishing. Polishing task for a curved surface die demands repetitive operation and high precision, but conventional control algorithm can not cope with the problem of disturbance such as a change of load. In this research, we develop robust controller using real time sliding mode algorithm. To obtain gain parameters of sliding model control input, the signal compression method is used to identify polishing robot system. To obtain an effect of 5 degrees of freedom motion, 5 axes NC data for polishing are divided into data of two types for 3 axis machining center and 2 axis polishing are divided into data of two types for 3 axis machining center and 2 axis polishing robot. To find an efficient polishing condition to obtain high quality, various experiments are carried out.

  • PDF

Development of a Controller for Polishing Robot Attached to Machining Center and Its Performance Evaluation

  • Go, Seok-Jo;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.346-351
    • /
    • 1998
  • Cutting process has been automated due to progress of CNC and CAD/CAM, but polishing process has been only depended on experiential knowledge of expert. Polishing work for a curved surface die demands simple and repetitive operations but requires much time for its high precision. Therefore it is operated in the handiwork by skilled worker. However the workers intend to avoid gradually polishing work because of the poor environments such as dust and noise. In order to reduce the polishing time and solve the problem of shortage of skilled workers, it has been done some research for an automation of polishing. To automate the polishing process, a 2 axes polishing robot which is attached to a 3 axes machining center has been developed by our previous research. This automatic polishing robot is able to keep the polishing tool normal on the curved surface of die. Therefore its performance of polishing is improved because of always keeping the tool normal on the surface. In this paper, the smaller sized polishing robot is developed to improve polishing performance. And the controller for 2 axes polishing robot is developed. The controller is composed of TMS320C31 with high speed which is 40-ns instruction cycle time, RAM memory with 64K words, digital input with 64 bits, digital output with 32 bits, and D/A converter with 4 channels, which is 12 bits resolution. To evaluate polishing performance of this developed robot, polishing experiment for shadow mask was carried out.

  • PDF

Adaptive Time-delayed Control with Integral Sliding-mode Surface for Fast Convergence Rate of Robot Manipulator (로봇 머니퓰레이터에서의 수렴속도 향상을 위한 적분 슬라이딩 모드 기반 적응 시간 제어 기법)

  • Baek, Jae-Min;Kang, Min-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.307-312
    • /
    • 2021
  • This paper proposes an adaptive time-delayed control approach with the integral sliding-mode surface for the fast convergence rate of robot manipulators. Adaptive switching gain aims to guarantee the system stability in such a way as to suppress time-delayed estimation error in the proposed control approach. Moreover, it makes an effort to increase the convergence ability in reaching the phase. An integral sliding-mode surface is employed to achieve a fast convergence rate in the sliding phase. The stability of the proposed one is proved to be asymptotically stable in the Lyapunov stability. The efficiency of the proposed control approach is illustrated with a tutorial example in robot manipulator, which is compared to that of the existing control approach.

A Study on the Map-Building of a Cleaning Robot Base upon the Optimal Cost Function (청소로봇의 최적비용함수를 고려한 지도 작성에 관한 연구)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.3
    • /
    • pp.39-45
    • /
    • 2009
  • In this paper we present a cleaning robot system for an autonomous mobile robot. Our robot performs goal reaching tasks into unknown indoor environments by using sensor fusion. The robot's operation objective is to clean floor or any other applicable surface and to build a map of the surrounding environment for some further purpose such as finding the shortest path available. Using its cleaning robot system for an autonomous mobile robot can move in various modes and perform dexterous tasks. Performance of the cleaning robot system is better than a fixed base redundant robot in avoiding singularity and obstacle. Sensor fusion using the clean robot improves the performance of the robot with redundant freedom in workspace and Map-Building. In this paper, Map-building of the cleaning robot has been studied using sensor fusion. A sequence of this alternating task execution scheme enables the clean robot to execute various tasks efficiently. The proposed algorithm is experimentally verified and discussed with a cleaning robot, KCCR.

Precision control of a mobile/task robot using visual information (비젼 정보를 이용한 이동/작업용 로봇의 정밀제어)

  • 한만용;이장명
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.71-79
    • /
    • 1997
  • This paper introduces a methodology of the precise control of a mobile/task robot using visual information captured bythe camera attached at the hand of the task robot. The major problem residing in the precise control of mobile/task robot is providing an accurate and stable base for the task robot through the precise control of mobile robot. On account of uncertainties on the surface, the precise control of mobile robot is not feasible without using external position sensor. In this paper, the methodology for the precise control of mobile robot is proposed, which recognizes the position of mobile robot using the camera attached at the hand of the task robot. While the task robot is approaching to an assembly part, the position of mobile robot is measured using the line correspondence between the image capturesd by the camera and the real assembly part, and using the kinematic transformation from the hand of the task robot to the mobile robot. To verify the solidness of this method, experimental data for the measurement of camera position/orientation and for the precise control of mobile robot using measurement are shown.

  • PDF

A Teleoperated Cleaning Robot for a High Radioactive Environment

  • Kim, Ki-Ho;Park, Jang-Jin;Yang, Myung-Seung;Oh, Chae-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.849-854
    • /
    • 2003
  • The Korea Atomic Energy Research Institute has developed a teleoperated cleaning robot for use in the radioactive zone of the isolation room of the Irradiated Material Examination Facility where direct human access to the interior is strictly limited. The teleoperated cleaning robot that was designed to completely eliminate human interaction with the hazardous radioactive contaminants has five remotely replaceable submodules - a mobile module for navigation, a cleaning module for dislodging and sucking contaminated waste, a sensing module for obstacle avoidance, a collection module for storing the acquired waste, and a cover module for protecting the collection module. This cleaning robot is capable of cleaning the contaminated floor surface of the isolation room and collecting loose dry spent nuclear fuel debris and other radioactive waste fixed or scattered on the floor surface. The developed cleaning robot is operated either by a manual control or by autonomous control in conjunction with a graphical simulator, by which the human operator can monitor and intervene the robot performing cleanup tasks in the isolation room. In this paper, we present the mechanical and environmental design considerations and development of the teleoperated cleaning robot for radioactive isolation room use. We also demonstrate its mock-up performance test results from the viewpoint of a remote cleanup operation and remote maintenance.

  • PDF