• Title/Summary/Keyword: Surface Reflection Waves

Search Result 105, Processing Time 0.023 seconds

방파제 형식에 따른 반사율 변화가 해저지형에 미치는 영향 수치해석: 물리기반 지형모형 SeoulFoam을 중심으로 (Numerical Analysis of Modified Seabed Topography Due to the Presence of Breakwaters of Varying Reflection Characteristics using Physics-based Morphology Model [SeoulFoam])

  • 조용준
    • 한국해안·해양공학회논문집
    • /
    • 제33권4호
    • /
    • pp.168-178
    • /
    • 2021
  • 방파제 형식에 따른 반사율 변화가 해저지형에 미치는 영향을 살펴보기 위한 수치 모의를 수행하였다. 수치 모형은 OpenFoam 기반 tool box인 OlaFlow와 물리기반 지형모형[SeoulFoam]으로 구성하였으며, 이 과정에서 침·퇴적으로 인해 변형을 겪는 해저지형과 내습하는 파랑 간의 상호작용은 Dynamic Mesh를 활용하여 기술하였다. 다양한 반사 특성을 보이는 사석 경사제, 직립제, 곡면 슬릿 케이슨 방파제는 서로 다른 정상파를 결과하였으며, 이는 해저지형에 상당한 영향을 미치는 것을 확인하였다. 이러한 결과는 저면 유속이 상대적으로 큰 정상파 마디[node]에서 연행된 모래가 경계층 drift에 의해 배[antinode]로 이송된다는 Nielsen(1993)의 연구 결과와도 일치한다. 이렇게 재배치되는 모래로 정상파의 배[antinode]에는 sand wave의 마루, 마디[antinode] 인근에는 sand wave의 곡이 형성되었으며, sand wave 진폭은 반사계수가 우월한 곡면 슬릿 케이슨에서 가장 크게 관측되었다. 이러한 현상은 반사계수가 큰 경우 마디에서의 저면 유속 증가로 상대적으로 많은 모래가 연행되어 발생하는 것으로 판단된다.

Plane waves in an anisotropic thermoelastic

  • Lata, Parveen;Kumar, Rajneesh;Sharma, Nidhi
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.567-587
    • /
    • 2016
  • The present investigation is to study the plane wave propagation and reflection of plane waves in a homogeneous transversely isotropic magnetothermoelastic medium with two temperature and rotation in the context of GN Type-II and Type-III (1993) theory of thermoelasticity. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal waves, namely quasi-longitudinal wave (QL), quasi-transverse wave (QTS) and quasi-thermal waves (QT). The different characteristics of waves like phase velocity, attenuation coefficients, specific loss and penetration depth are computed numerically and depicted graphically. The phenomenon of reflection coefficients due to quasi-waves at a plane stress free with thermally insulated boundary is investigated. The ratios of the linear algebraic equations. These amplitude ratios are used further to calculate the shares of different scattered waves in the energy of incident wave. The modulus of the amplitude and energy ratios with the angle of incidence are computed for a particular numerical model. The conservation of energy at the free surface is verified. The effect of energy dissipation and two temperatures on the energy ratios are depicted graphically and discussed. Some special cases of interest are also discussed.

Ultrasonic Evaluation of Interfacial Stiffness for Nonlinear Contact Surfaces

  • Kim, Noh-Yu;Kim, Hyun-Dong;Cho, Youn-Ho
    • 비파괴검사학회지
    • /
    • 제28권6호
    • /
    • pp.504-511
    • /
    • 2008
  • This paper proposes an ultrasonic measurement method for measurement of linear interfacial stiffness of contacting surface between two steel plates subjected to nominal compression pressures. Interfacial stiffness was evaluated by using shear waves reflected at contact interface of two identical solid plates. Three consecutive reflection waves from solid-solid surface are captured by pulse-echo method to evaluate the state of contact interface. A non-dimensional parameter defined as the ratio of their peak-to-peak amplitudes are formulated and used to calculate the quantitative stiffness of interface. Mathematical model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves across the interface and to determine the interfacial stiffness. Two identical plates are fabricated and assembled to form contacting surface and to measure interfacial stiffness at different states of contact pressure by means of bolt fastening. It is found from experiment that the amplitude of interfacial stiffness is dependent on the pressure and successfully determined by employing pulse-echo ultrasonic method without measuring through-transmission waves.

Investigation on bragg reflection of surface water waves induced by a train of fixed floating pontoon breakwaters

  • Ouyang, Huei-Tau;Chen, Kue-Hong;Tsai, Chi-Ming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권6호
    • /
    • pp.951-963
    • /
    • 2015
  • The water wave characteristics of Bragg reflections from a train of fixed floating pontoon breakwaters was studied numerically. A numerical model of boundary discretization type was developed to calculate the wave field. The model was verified by comparing to analytical data in literature and good agreements were achieved. Series of parametric studies were conducted systematically to investigate the dependence of the reflected coefficients by the Bragg scattering on the design variables, including the spacing between the breakwaters, the total number of installed breakwaters, the draft and width do the breakwater, and wave length. Certain wave characteristics of the Bragg reflections were observed and discussed in details which might be of help for practical engineering applications in shoreline protection from incident waves.

빔형성 방법을 이용한 반사계수 측정 (Measurement of reflection coefficient using beamforming method)

  • 주형준;강연준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.699-704
    • /
    • 2002
  • A method using beamforming algorithm has been developed to measure oblique incidence reflection coefficients of sound absorption materials. MUSIC(Multiple Signal Classification) method detects the angles of incidence and reflection. By separating the incident and reflected waves using beamforming method, the reflection coefficient is calculated. Spatial smoothing technique is also used to reduce the coherence between the incident and reflected waves. The test materials were modeled as a locally reacting surface. Numerical and experiment results are performed to verify the acuracy of proposed method.

  • PDF

CMP cross-correlation analysis of multi-channel surface-wave data

  • Hayashi Koichi;Suzuki Haruhiko
    • 지구물리와물리탐사
    • /
    • 제7권1호
    • /
    • pp.7-13
    • /
    • 2004
  • In this paper, we demonstrate that Common Mid-Point (CMP) cross-correlation gathers of multi-channel and multi-shot surface waves give accurate phase-velocity curves, and enable us to reconstruct two-dimensional (2D) velocity structures with high resolution. Data acquisition for CMP cross-correlation analysis is similar to acquisition for a 2D seismic reflection survey. Data processing seems similar to Common Depth-Point (CDP) analysis of 2D seismic reflection survey data, but differs in that the cross-correlation of the original waveform is calculated before making CMP gathers. Data processing in CMP cross-correlation analysis consists of the following four steps: First, cross-correlations are calculated for every pair of traces in each shot gather. Second, correlation traces having a common mid-point are gathered, and those traces that have equal spacing are stacked in the time domain. The resultant cross-correlation gathers resemble shot gathers and are referred to as CMP cross-correlation gathers. Third, a multi-channel analysis is applied to the CMP cross-correlation gathers for calculating phase velocities of surface waves. Finally, a 2D S-wave velocity profile is reconstructed through non-linear least squares inversion. Analyses of waveform data from numerical modelling and field observations indicate that the new method could greatly improve the accuracy and resolution of subsurface S-velocity structure, compared with conventional surface-wave methods.

Effect of two-temperature on the energy ratio at the boundary surface of inviscid fluid and piezothermoelastic medium

  • Kumar, Rajneesh;Sharma, Poonam
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.743-752
    • /
    • 2020
  • The phenomenon of reflection and transmission of plane waves at an interface between fluid half space and orthotropic piezothermoelastic solid half-space with two-temperature has been investigated. Energy ratios of various reflected and transmitted waves are computed with the use of amplitude ratios. The law of conservation of energy across the interface has been justified. It is found that the energy ratios are the functions of angle of incidence, frequency of independent wave and depend on the different piezothermoelastic material. A piezothermoelastic material has been considered which is in welded contact with water. Variations of energy ratios corresponding to the reflected waves and transmitted waves are computed and shown graphically for the two different models. A particular reduced case of interest is also discussed.

혼합경계적분 요소법을 사용한 직교입사파랑의 반사률계산 모델 (A Hybrid Boundary Integral Equation Model Applied for the Calculation of Normal Incident Waves)

  • 서승남;김상익
    • 한국해안해양공학회지
    • /
    • 제3권3호
    • /
    • pp.170-175
    • /
    • 1991
  • 지형에 의한 파랑의 반사율을 계산하기 위하여 혼합 경계적분 요소법(HBIEM)을 사용하였다. 선형요소를 사용한 수치모델의 결과를 기존의 결과와 비교하여 정확도를 검증한 후 입사 파랑의 조건에 따른 반사율과 투과율을 계산하였다. 계단식 지형에 대한 본 모델의 결과는 기존의 결과에 잘 부합되었으며 계단식 지형의 반사율은 수심이 깊어짐에 따라 단조 감소하나 일정한 수심위에 놓인 sinusoidal 둔덕의 반사율은 수심이 깊어짐에 따라 증가하여 최고점에 이른 후 다시 감소하는 형태를 보인다. 한편 두 재의 둔덕(hump)에 의한 반사율은 상호작용에 의해 그 형태가 현저하게 바뀌며 파랑조건에 따른 반사율이 도시되었다.

  • PDF

Enhancement in Isolation among Collinearly Placed Microstrip Patch Antenna Arrays

  • Irfan Ali, Tunio;Hernan, Dellamaggiora;Umair, Saeed;Ayaz Ahmed, Hoshu;Ghulam, Hussain
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.120-124
    • /
    • 2023
  • Strong surface waves among collinearly arranged patch antenna arrays pose unwanted inter element coupling particularly when high permittivity dielectric materials are used. In order to avert those waves, a novel Defected Ground Structure (DGS) is carved out systematically between two E-plane patch antenna elements. The introduced low profile μ shaped structure consequently improves impedance bandwidth and reflection coefficient by suppressing surface waves considerably. Parametric simulation results are analyzed and discussed.

The research of the floating-type wave power pump composed of a slope, a curved surface reflection board and phase plates

  • Horikomi, Tomoyuki;Shoji, Kuniaki;Minami, Kiyokazu
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 Asia Navigation Conference
    • /
    • pp.95-104
    • /
    • 2006
  • A floating-type wave power pump is a device which sends air into water by using wave power. The floating-type wave power pump has the new configuration composed of a curved surface reflection board, a slope, and phase plates. As a result of a water-tank experiment it turned out that the floating-type wave power pump with a curved surface reflection board and a slope raised power and efficiency in the wide wavelength waves. The result of a marine experiment was also preferable. The floating-type wave power pump sends air into the sea by using wave power, so it can be used for the improvement of marine environment. In addition, the floating body constituted of a curved surface reflection board, a slope, and phase plates, is effective as a device to utilize the energy of a wave. Therefore, it can be widely used for a wave power generation, pumping up deep seawater.

  • PDF