• Title/Summary/Keyword: Surface Radiation

Search Result 2,139, Processing Time 0.03 seconds

The NCAM Land-Atmosphere Modeling Package (LAMP) Version 1: Implementation and Evaluation (국가농림기상센터 지면대기모델링패키지(NCAM-LAMP) 버전 1: 구축 및 평가)

  • Lee, Seung-Jae;Song, Jiae;Kim, Yu-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.307-319
    • /
    • 2016
  • A Land-Atmosphere Modeling Package (LAMP) for supporting agricultural and forest management was developed at the National Center for AgroMeteorology (NCAM). The package is comprised of two components; one is the Weather Research and Forecasting modeling system (WRF) coupled with Noah-Multiparameterization options (Noah-MP) Land Surface Model (LSM) and the other is an offline one-dimensional LSM. The objective of this paper is to briefly describe the two components of the NCAM-LAMP and to evaluate their initial performance. The coupled WRF/Noah-MP system is configured with a parent domain over East Asia and three nested domains with a finest horizontal grid size of 810 m. The innermost domain covers two Gwangneung deciduous and coniferous KoFlux sites (GDK and GCK). The model is integrated for about 8 days with the initial and boundary conditions taken from the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) data. The verification variables are 2-m air temperature, 10-m wind, 2-m humidity, and surface precipitation for the WRF/Noah-MP coupled system. Skill scores are calculated for each domain and two dynamic vegetation options using the difference between the observed data from the Korea Meteorological Administration (KMA) and the simulated data from the WRF/Noah-MP coupled system. The accuracy of precipitation simulation is examined using a contingency table that is made up of the Probability of Detection (POD) and the Equitable Threat Score (ETS). The standalone LSM simulation is conducted for one year with the original settings and is compared with the KoFlux site observation for net radiation, sensible heat flux, latent heat flux, and soil moisture variables. According to results, the innermost domain (810 m resolution) among all domains showed the minimum root mean square error for 2-m air temperature, 10-m wind, and 2-m humidity. Turning on the dynamic vegetation had a tendency of reducing 10-m wind simulation errors in all domains. The first nested domain (7,290 m resolution) showed the highest precipitation score, but showed little advantage compared with using the dynamic vegetation. On the other hand, the offline one-dimensional Noah-MP LSM simulation captured the site observed pattern and magnitude of radiative fluxes and soil moisture, and it left room for further improvement through supplementing the model input of leaf area index and finding a proper combination of model physics.

The Analysis of Spectral characteristics of Water Quality Factors Uisng Airborne MSS Data (Airborne MSS 자료를 이용한 수질인자의 분광특성 분석)

  • Dong-Ho Jang;Gi-Ho Jo;Kwang-Hoon Chi
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.296-306
    • /
    • 1998
  • Airborne MSS data is regarded as a potentially effective data source for the measurement of water quality and for the environmental change of water bodies. In this study, we measured the radiance reflectance by using multi-spectral image of low resolution camera(LRC) which will be reached in the multi-purpose satellite(KOMPSAT) to use the data in analyzing water pollution. We also investigated the possibility of extraction of water quality factors in water bodies by using high resolution remote sensing data such as Airborne MSS. Especially, we tried to extract environmental factors related with eutrophication such as chlorophyll-a, suspended sediments and turbidity, and also tried to develop the process technique and the radiance feature of reflectance related with eutrophication. Although it was difficult to explicitly correlate Airborne MSS data with water quality factors due to the insufficient number of ground truth data. The results were summarized as follows: First, the spectrum of sun's rays which reaches the surface of the earth was consistent with visible bands of 0.4${\mu}{\textrm}{m}$~0.7${\mu}{\textrm}{m}$ and about 50% of total quantity of radiation could be found. The spectrum was reached highest at around 0.5${\mu}{\textrm}{m}$ of green spectral band in visible bands. Second, as a result of the radiance reflectance Chlorophyll-a represented high mainly around 0.52${\mu}{\textrm}{m}$ of green spectral band, and suspended sediments and turbidity represented high at 0.8${\mu}{\textrm}{m}$ and at 0.57${\mu}{\textrm}{m}$, respectively. Finally, as a result of the water quality analysis by using Airborne MSS, Chlorophyll-a could have a distribution image after carrying out ratio of B3 and B5 to B7. Band 7 was useful for making the distribution image of suspended sediments. When we carried out PCA, suspended sediments and turbidity had distributions at PC 1 and PC 4 which are similar to the ground data. Above results can be changed according to the change of season and time. Therefore, in order to analyze the environmental factors of water quality by using LRC data more exactly, we need to investigate the ground data and the radiance feature of reflectance of water bodies constantly. For further studies, we will constantly analyze the radiance feature of the surface of water in wafter bodies by measuring the on-the-spot radiance reflectance and using low resolution satellite image(SeaWiFS). We will also gather the data of water quality analysis in water bodies and analyze the pattern of water pollution.

The Signal Transduction Mechanisms on the Intestinal Mucosa of Rat Following Irradiation (방사선조사후 백서소장점막에서 발생하는 신호전달체계에 관한 연구)

  • Yoo Jeong Hyun;Kim Sung Sook;Lee Kyung Ja;Rhee Chung Sik
    • Radiation Oncology Journal
    • /
    • v.15 no.2
    • /
    • pp.79-95
    • /
    • 1997
  • Purpose : Phospholipase C(PLC) isozymes play significant roles in signal transduction mechanism. $PLC-\gamma$ 1 is one of the key regulatory enzymes in signal transduction for cellular proliferation and differentiation. Ras oncoprotein, EGFR, and PKC are also known to be involved in cell growth. The exact mechanisms of these signal transduction following irradiation, however, were not clearly documented Thus, this study was Planned to determine the biological significance of PLC, ras oncoprotein, EGFR, and PKC in damage and regeneration of rat intestinal mucosa following irradiation. Material and Method : Sixty Sprague-Dawley rats were irradiated to entire body with a single dose of 8Gy. The rats were divided into S groups according to the sacrifice days after irradiation. The expression of PLC, ras oncoprotein, EGFR and PKC in each group were examined by the immunoblotting and immunohistochemistry. The histopathologic findings were observed using H&I stain, and the mitoses for the evidence of regeneration were counted using the light microscopy & PCNA kit. The Phosphoinositide(PI) hydrolyzing activity assay was also done for the indirect evaluation of $PLC-\gamma$ 1 activity. Results: In the immunohistochemistry , the expression of $PLC-{\beta}$ was negative for all grøups. The expression of $PLC-{\gamma}1$ was highest in the group III followed by group II in the proliferative zone of mucosa. The expression of $PKC-{\delta}1$ was strongly positive in group 1 followed by group II in the damaged surface epithelium. The above findings were also confirttled in the immunoblotting study. In the immunoblotting study, the expressions of $PLC-{\beta}$, $PLC-{\gamma}1$, and $PKC-{\delta}1$ were the same as the results of immunohis-tochemistry. The expression of ras oncoprctein was weakly positive in groups II, III and IV. The of EGFR was the highest in the group II, III, follwed by group IV and the expression of PKC was weakly positive in the group II and III. Conclusion: $PLC-{\gamma}1$ mediated signal transduction including ras oncoprotein, EGFR, and PKC play a significant role in mucosal regeneration after irradiation. $PLC-{\delta}1$ mediated signal transduction might have an important role in mucosal damage after irradiation. Further studies will be necessary to confirm the signal transduction mediating the $PKC-{\delta}1$.

  • PDF

Modeling of Estimating Soil Moisture, Evapotranspiration and Yield of Chinese Cabbages from Meteorological Data at Different Growth Stages (기상자료(氣象資料)에 의(依)한 배추 생육시기별(生育時期別) 토양수분(土壤水分), 증발산량(蒸發散量) 및 수량(收量)의 추정모형(推定模型))

  • Im, Jeong-Nam;Yoo, Soon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.386-408
    • /
    • 1988
  • A study was conducted to develop a model for estimating evapotranspiration and yield of Chinese cabbages from meteorological factors from 1981 to 1986 in Suweon, Korea. Lysimeters with water table maintained at 50cm depth were used to measure the potential evapotranspiration and the maximum evapotranspiration in situ. The actual evapotranspiration and the yield were measured in the field plots irrigated with different soil moisture regimes of -0.2, -0.5, and -1.0 bars, respectively. The soil water content throughout the profile was monitored by a neutron moisture depth gauge and the soil water potentials were measured using gypsum block and tensiometer. The fresh weight of Chinese cabbages at harvest was measured as yield. The data collected in situ were analyzed to obtain parameters related to modeling. The results were summarized as followings: 1. The 5-year mean of potential evapotranspiration (PET) gradually increased from 2.38 mm/day in early April to 3.98 mm/day in mid-June, and thereafter, decreased to 1.06 mm/day in mid-November. The estimated PET by Penman, Radiation or Blanney-Criddle methods were overestimated in comparison with the measured PET, while those by Pan-evaporation method were underestimated. The correlation between the estimated and the measured PET, however, showed high significance except for July and August by Blanney-Criddle method, which implied that the coefficients should be adjusted to the Korean conditions. 2. The meteorological factors which showed hgih correlation with the measured PET were temperature, vapour pressure deficit, sunshine hours, solar radiation and pan-evaporation. Several multiple regression equations using meteorological factors were formulated to estimate PET. The equation with pan-evaporation (Eo) was the simplest but highly accurate. PET = 0.712 + 0.705Eo 3. The crop coefficient of Chinese cabbages (Kc), the ratio of the maximum evapotranspiration (ETm) to PET, ranged from 0.5 to 0.7 at early growth stage and from 0.9 to 1.2 at mid and late growth stages. The regression equation with respect to the growth progress degree (G), ranging from 0.0 at transplanting day to 1.0 at the harvesting day, were: $$Kc=0.598+0.959G-0.501G^2$$ for spring cabbages $$Kc=0.402+1.887G-1.432G^2$$ for autumn cabbages 4. The soil factor (Kf), the ratio of the actual evapotranspiration to the maximum evapotranspiration, showed 1.0 when the available soil water fraction (f) was higher than a threshold value (fp) and decreased linearly with decreasing f below fp. The relationships were: Kf=1.0 for $$f{\geq}fp$$ Kf=a+bf for f$$I{\leq}Esm$$ Es = Esm for I > Esm 6. The model for estimating actual evapotranspiration (ETa) was based on the water balance neglecting capillary rise as: ETa=PET. Kc. Kf+Es 7. The model for estimating relative yield (Y/Ym) was selected among the regression equations with the measured ETa as: Y/Ym=a+bln(ETa) The coefficients and b were 0.07 and 0.73 for spring Chinese cabbages and 0.37 and 0.66 for autumn Chinese cabbages, respectively. 8. The estimated ETa and Y/Ym were compared with the measured values to verify the model established above. The estimated ETa showed disparities within 0.29mm/day for spring Chinese cabbages and 0.19mm/day for autumn Chinese cabbages. The average deviation of the estimated relative yield were 0.14 and 0.09, respectively. 9. The deviations between the estimated values by the model and the actual values obtained from three cropping field experiments after the completion of the model calibration were within reasonable confidence range. Therefore, this model was validated to be used in practical purpose.

  • PDF

Thermal Environments of Children's Parks during Heat Wave Period (폭염 시 어린이공원의 온열환경)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.6
    • /
    • pp.84-97
    • /
    • 2016
  • This study was to investigate the user's thermal environments of the children's parks according to pavements and sunscreen types during periods of heat waves. The measurements were conducted at the sand pits, rubber chip pavement, shelters, and green shade ground of the two children's parks located in Jinju, Korea(Chilam: $N\;35^{\circ}11^{\prime}1.4{^{\prime}^{\prim}}$, $E\;128^{\circ}5^{\prime}31.7{^{\prime}^{\prime}}$, elevation 38m, Gaho: $N\;35^{\circ}09^{\prime}56.8{^{\prime}^{\prime}}$, $E\;128^{\circ}6^{\prime}41.1{^{\prime}^{\prime}}$, elevation 24m) over three days during 11-13, August, 2016. The highest ambient air temperatures at the Jinju Meteorological Office during the three measurement days were $35.9{\sim}36.8^{\circ}C$, which corresponded with the extremely hot weather. A series of experiments measured air temperature, relative humidity, wind velocity, black globe temperature, and long-wave and short-wave radiation of the six directions 0.6 m above ground level. The wet bulb globe temperature(WBGT) and the universal thermal climatic index(UTCI) were used to evaluate thermal stress. Surface temperature images of the play equipment were also taken using infrared thermography. Surface temperatures of the play equipment and grounds were used to evaluate burn risk through contact with playground materials. The results showed the following. The maximum air temperatures averaged over 1-hour period for three days were $36.6{\sim}39.4^{\circ}C$. The sun shades reduced those temperatures by up to $2.8^{\circ}C$(green shade) and $1.0^{\circ}C/2.3^{\circ}C$(shelters). The minimum relative humidity values averaged over 1-hour period for three days were 44~50%. The sun shades increased those humidity values by up to 6%(green shade) and 4%/6%(shelters). The risk of heat related illness at the measurement sites of the children's parks were extreme and high in the daytime hours. The maximum WBGT values averaged over a 30-minute period for three days were $31.2{\sim}33.6^{\circ}C$. The sun shades reduced those WBGT values by up to $2.4^{\circ}C$(green shade) and $0.5^{\circ}C/2.1^{\circ}C$(shelters) compared to sandpits, but would not block the risk of heat related illness in the daytime hours. The category of heat stress at the measurement sites of the children's parks were extreme and very strong in the daytime hours. The maximum UTCI values averaged over a 30-minute period for three days were $39.9{\sim}48.1^{\circ}C$. The sun shades reduced those UTCI values by up to $7.8^{\circ}C$(green shade) and $4.1^{\circ}C/8.2^{\circ}C$(shelters) compared to sandpits, but could not lower heat stress category from extreme and very strong to strong and moderate in the daytime hours. According to the burn threshold criteria when skin was in contact with playground materials, the maximum surface temperature of the stainless steels($70.8^{\circ}C$) surpassed three seconds $60^{\circ}C$ threshold for uncoated steel, that of the rubber chip($76.5^{\circ}C$) surpassed five seconds $74^{\circ}C$ threshold for the plastic, that of the plastic slide($68.5^{\circ}C$) and seats($71.0^{\circ}C$) surpassed the one min $60^{\circ}C$ threshold for plastic, respectively. The surface temperatures of shaded play equipment were lower approximately $20^{\circ}C$ than those of play equipment exposed to the sun. Therefore, sun shades can block the risk of burns in daytime hours. Because of the extreme and high risk of heat related illness and extreme and high heat stress at the children's parks during periods of heat waves, parents and administrators must protect children from the use of playgrounds. The risk of burn when contact with play equipments and grounds at the children's parks during periods of heat waves, was very high. The sun shades are essential to block the risk of burn from play equipments and grounds at the children's parks during heat waves.

Development of a Solar Collector Performance of Cylindrical Parabolic Concentrating Solar Collector (태양열(太陽熱) 집열기개발(集熱器開發)에 관(關)한 연구(硏究) - 포물반사곡면(抛物反射曲面)으로된 2차원(二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器)의 성능분석(性能分析) -)

  • Song, Hyun Kap;Yon, Kwang Seok;Cho, Sung Chan
    • Journal of Biosystems Engineering
    • /
    • v.10 no.1
    • /
    • pp.54-68
    • /
    • 1985
  • It is desirable to collect the solar thermal energy at relatively high temperature in order to minimize the size of thermal storage system and to enlarge the scope of solar thermal energy utilization. So far the concentrating solar collector has been developed to collect solar thermal energy at relatively high temperature, but it has some difficulties in maintaining the volumetric body of solar collector for long term utilization. On the other hand, the flat-plate solar collector has been developed to collect the solar thermal energy at low temperature, and it has advantages in maintaining the system for long term utilization, since it's thickness is thin and not volumetric. In this study, to develop a solar collector that has both advantages of collecting solar thermal energy at high temperature and fixing conveniently the collector system for long term period, a cylindrical parabolic concentrating solar collector was designed, which has two rows of parabolic reflectors and thin thickness such as the flat-plate solar collector, maintaining the optical form of concentrating solar collector. The characteristics of the concentrating parabolic solar collector newly designed was analysed and the results are summarized as follows; 1. The temperature of the air enclosed in solar collector was all the same as $50^{\circ}C$ in both cases of the open and closed loop, and when the heat transfer fluid was not circulated in tubular absorber, the maximum surface temperature of the absorber was $118-120^{\circ}C$, this results suggested that the heat transfer fluid could be heated up to $118^{\circ}C$. 2. In case of longitudinal installation of the solar collector, the temperature difference of heat transfer fluid between inlet and outlet was $4^{\circ}-6^{\circ}C$ at the flow rate of $110-130{\ell}/hr$, and the collected solar energy per unit area of collector was $300-465W/m^2$. 3. The collected solar energy per unit area for 7 hours was 1960 Kcal/$m^2$ for the open loop and 220 Kcal/$m^2$ for the closed loop. Therefore it is necessary to combine the open and closed loop of solar collectors to improve the thermal efficiency of solar collector. 4. The thermal efficiency of the solar collector (C.P.C.S.C.) was proportional to the density of solar radiation, indicating the maximum thermal efficiency ${\eta}_{max}=58%$ with longitudinal installation and ${\eta}_{max}=45%$ with lateral installation. 5. The thermal efficiency of the solar collector (C.P.C.S.C.) was increased in accordance with the increase of flow rate of heat transfer fluid, presenting the flow rate of $110{\ell}/hr$ was the value of turning point of the increasing rate of the collector efficiency, therefore the flow rate of $110{\ell}/hr$ was considered as optimum value for the test of the solar collector (C.P.C.S.C.) performance when the heat transfer fluid is a liquid. 6. In both cases of longitudinal and lateral installation of the solar collector (C.P.C.S.C.), the thermal efficiency was decreased linearly with an increase in the value of the term ($T_m-T_a$)/Ic and the increasing rate of the thermal efficiency was not effected by the installation method of solar collector.

  • PDF

Preliminary Study for Imaging of Therapy Region from Boron Neutron Capture Therapy (붕소 중성자 포획 치료에서 치료 영역 영상화를 위한 예비 연구)

  • Jung, Joo-Young;Yoon, Do-Kun;Han, Seong-Min;Jang, HongSeok;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.151-156
    • /
    • 2014
  • The purpose of this study was to confirm the feasibility of imaging of therapy region from the boron neutron capture therapy (BNCT) using the measurement of the prompt gamma ray depending on the neutron flux. Through the Monte Carlo simulation, we performed the verification of physical phenomena from the BNCT; (1) the effects of neutron according to the existence of boron uptake region (BUR), (2) the internal and external measurement of prompt gamma ray dose, (3) the energy spectrum by the prompt gamma ray. All simulation results were deducted using the Monte Carlo n-particle extended (MCNPX, Ver.2.6.0, Los Alamos National Laboratory, Los Alamos, NM, USA) simulation tool. The virtual water phantom, thermal neutron source, and BURs were simulated using the MCNPX. The energy of the thermal neutron source was defined as below 1 eV with 2,000,000 n/sec flux. The prompt gamma ray was measured with the direction of beam path in the water phantom. The detector material was defined as the lutetium-yttrium oxyorthosilicate (Lu0,6Y1,4Si0,5:Ce; LYSO) scintillator with lead shielding for the collimation. The BUR's height was 5 cm with the 28 frames (bin: 0.18 cm) for the dose calculation. The neutron flux was decreased dramatically at the shallow region of BUR. In addition, the dose of prompt gamma ray was confirmed at the 9 cm depth from water surface, which is the start point of the BUR. In the energy spectrum, the prompt gamma ray peak of the 478 keV was appeared clearly with full width at half maximum (FWHM) of the 41 keV (energy resolution: 8.5%). In conclusion, the therapy region can be monitored by the gamma camera and single photon emission computed tomography (SPECT) using the measurement of the prompt gamma ray during the BNCT.

Analyses of the indispensible Indices in Evaluating Gamma Knife Radiosurgery Treatment Plans (감마나이프 방사선수술 치료계획의 평가에 필수불가결한 지표들의 분석)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.303-312
    • /
    • 2017
  • The central goal of Gamma Knife radiosurgery(GKRS) is to maximize the conformity of the prescription isodose surface, and to minimize the radiation effect of the normal tissue surrounding the target volume. There are the various kinds of indices related with the quality of treatment plans such as conformity index, coverage, selectivity, beam-on time, gradient index(GI), and conformity/gradient index(CGI). As the best treatment plan evaluation tool, we must check by all means conformity index, GI, and CGI among them. Specially, GI and CGI related with complication of healthy normal tissue is more indispensible than conformity index. Then author calculated and statistically analysed CGI, the newly defined conformity/gradient index as well as GI being applied widely using the treatment planning system Leksell GammaPlan(LGP) and the verification method Variable Ellipsoid Modeling Technique(VEMT). In the study 10 patients with intracranial lesion treated by GKRS were included. Author computed the indices from LGP and VEMT requiring only four parameters: the prescribed isodose volume, the volume with dose > 30%, the target volume, and the volume of half the prescription isodose. All data were analyzed by paired t-test, which is statistical method used to compare two different measurement techniques. No statistical significance in GI at 10 cases was observed between LGP and VEMT. Differences in GI ranged from -0.14 to 0.01. The newly defined gradient index calculated by two methods LGP and VEMT was not statistically significant either. Author did not find out the statistical difference for the prescribed isodose volume between LGP and VEMT. CGI as the evaluation index for determining the best treatment plan is not significant statistically also. Differences in CGI ranged from -4 to 3. Similarly newly defined Conformity/Gradient index for GKRS was also estimated as the metric for the evaluation of the treatment plans through statistical analysis. Statistical analyses demonstrated that VEMT was in excellent agreement with LGP when considering GI, new gradient index, CGI, and new CGI for evaluating the best plans of GKRS. Due to the application of the fast and easy evaluation tool through LGP and VEMT author hopes CGI and newly defined CGI as well as gradient indices will be widely used.

Suggestions for improving data quality assurance and spatial representativeness of Cheorwon AAOS data (철원 자동농업기상관측자료의 품질보증 및 대표성 향상을 위한 제언)

  • Park, Juhan;Lee, Seung-Jae;Kang, Minseok;Kim, Joon;Yang, Ilkyu;Kim, Byeong-Guk;You, Keun-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.47-56
    • /
    • 2018
  • Providing high-quality meteorological observation data at sites that represent actual farming environments is essential for useful agrometeorological services. The Automated Agricultural Observing System (AAOS) of the Korean Meteorological Administration, however, has been deployed on lawns rather than actual farm land. In this study, we show the inaccuracies that arise in AAOS data by analyzing temporal and vertical variation and by comparing them with data recorded by the National Center for AgroMeteorology (NCAM) tower that is located at an actual farming site near the AAOS tower. The analyzed data were gathered in August and October (before and after harvest time, respectively). Observed air temperature and water vapor pressure were lower at AAOS than at NCAM tower before and after harvest time. Observed reflected shortwave radiation tended to be higher at AAOS than at NCAM tower. Soil variables showed bigger differences than meteorological observation variables. In August, observed soil temperature was lower at NCAM tower than at AAOS with smaller diurnal changes due to irrigation. The soil moisture observed at NCAM tower continuously maintained its saturation state, while the one at AAOS showed a decreasing trend, following an increase after rainfall. The trend changed in October. Observed soil temperature at NCAM showed similar daily means with higher diurnal changes than at AAOS. The soil moisture observed at NCAM was continuously higher, but both AAOS and NCAM showed similar trends. The above results indicate that the data gathered at the AAOS are inaccurate, and that ground surface cover and farming activities evoke considerable differences within the respective meteorological and soil environments. We propose to shift the equipment from lawn areas to actual farming sites such as rice paddies, farms and orchards, so that the gathered data are representative of the actual agrometeorological observations.

Estimation of Spatial Accumulation and transportation of Chl-$\alpha$ by the Numerical Modeling in Red Tide of Chinhae Bay (진해만 적조에 있어서 수치모델링에 의한 Chl-$\alpha$의 공간적 집적과 확산 평가)

  • Lee Dae-In
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • The summer distribution of $Cha-{alpha}$ and physical processes for simulating outbreak region of red tide were estimated by the Eco-Hydrodynamic model in Chinhae Bay. As a result of simulation of surface residual currents, the southward flow come in contact with the northward flow at the inlet and western part of bay in case of windlessness and below wind velocity 2 m/sec. As wind velocity increases, the velocity and direction of currents were fairly shifted. The predicted concentration of $Cha-{alpha}$ exceeded 20 mg/㎥ in Masan and Haengam Bays, and most regions were over 10 mg/㎥, which meant the possibility of red tide outbreak. From the results of the contributed physical processes to $Cha-{alpha}$, accumulation sites were distributed at the northern part of Kadok channel, around the Chilcheon island, the western part of Kajo island and some area of Chindong Bay. On the other hand, inner parts of the study area such as Masan Bay were estimated as the sites of strong algal activities. Masan and Haengam Bay are considered as the initial outbreak region of red tide by the modeling and observed data, and then red tide expanded to other areas such as physical accumulation region and western inner bay, as depending on environmental variation. The increase of wind velocity led to decrease of $Cha-{alpha}$ and enlargement of accumulation region. The variation of intensity of radiation and sunshine duration caused to rapidly fluctuation of $Cha-{alpha}$: however, it was not largely affected by the variation of pollutant loads from the land only.

  • PDF