• 제목/요약/키워드: Surface Prediction

검색결과 1,960건 처리시간 0.028초

실 가공형 CAM 시스템 연구: 가공형상의 예측 및 실험 검증 (A Study on the Virtual Machining CAM System : Prediction and Experimental Verification of Machined Surface)

  • 김형우;서석환;신창호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.961-964
    • /
    • 1995
  • For geometric accuracy in the net shape machining, the problem of tool deflection should be resolved in some fashion. In particular, this is crucial in finish cut operation where slim tools are used. The purpose of this paper is to verify the validity and effectiveness of the prediction model of the machined surface. Experimental results are presented for the cut of steel material with HSS endmill of diameter 6mm on machining center. The results shows that 1) the machining error due totool deflection is serious even in the low cutting load, 2) by using the mechanistic simulation model with experimental coefficients, the machining error was predicted with maximum prediction error of 10% which was significantly reduced to the desired level by the path modification method.

  • PDF

인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측 (Prediction of Deep-Excavation induced Ground surface movements using Artifical Neural Network)

  • 유충식;최병석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.451-458
    • /
    • 2002
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep-excavation-induced ground movements was employed and validated against available large-scale model test results. The validated model was then used to perform a parametric study on deep excavations with emphasis on ground movements. Using the result of the finite element analysis, Artificial Neural Network(ANN) system is formed, which can be used in the prediction of deep exacavation-induced ground surface displacements. The developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

강우 데이터를 쓰지 않는 홍수예측법에 관한 연구 (A Study on Flood Prediction without Rainfall Data)

  • 김치홍
    • 기술사
    • /
    • 제18권2호
    • /
    • pp.1-5
    • /
    • 1985
  • In the flood prediction research, it is pointed out that the difficulty of flood prediction is the frequently experienced overestimation of flood peak. That is caused by the rainfall prediction difficulty and the nonlinearity of hydrological phenomena. Even though the former reason will remain still unsolved, but the latter one can be possibly resolved the method of the AMRA (Auto Regressive Moving Average) model for each runoff component as developed by Dr. Hino and Dr. Hasebe. The principle of the method consists of separating though the numerical filters the total runoff time series into long-term, intermediate and short-term components, or ground water flow, interflow, and surface flow components. As a total system, a hydrological system is a non-linear one. However, once it is separated into two or three subsystems, each subsystem may be treated as a linear system. Also the rainfall components into each subsystem a estimated inversely from the runoff component which is separated from the observed flood. That is why flood prediction can be done without rainfall data. In the prediction of surface flow, the Kalman filter will be applicable but this paper shows only impulse function method.

  • PDF

재질열화가 표면 균열 진전에 미치는 영향과 수명 예측에 관한 연구 (Effect of Temper-Embrittlement on Surface Crack Growth and Fatigue Life Prediction)

  • 권재도
    • 대한기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.921-927
    • /
    • 1989
  • 본 연구에서는 피로 균열의 진전 특성 및 표면 균열과 같은 3차원 균열의 진전 특성에 나타나는 재질 열화의 영향, 열화와 피로 파괴 형태의 관계, 균열진전 속도의 분산(scattering)과 열화의 관계등에 주목해서 열화재와 회복재의 2종류의 재료를 사용해, 피로 시험에 의한 균열진전의 실험적 특성을 고찰하였다. 또한, 저자들의 종래 관통 균열 진전 특성에 대한 연구 결과를 응용해서 열화와 균열진전의 확률특성을 고려한 표면균열 진전에 대한 시뮬레이션(simulation)을 행해서 피로 수명 예측에 미치는 열화의 영향에 대해 검토해 보았다.

Development of the Korea Ocean Prediction System

  • Suk, Moon-Sik;Chang, Kyung-Il;Nam, Soo-Yong;Park, Sung-Hyea
    • Ocean and Polar Research
    • /
    • 제23권2호
    • /
    • pp.181-188
    • /
    • 2001
  • We describe here the Korea ocean prediction system that closely resembles operational numerical weather prediction systems. This prediction system will be served for real-time forecasts. The core of the system is a three-dimensional primitive equation numerical circulation model, based on ${\sigma}$-coordinate. Remotely sensed multi-channel sea surface temperature (MCSST) is imposed at the surface. Residual subsurface temperature is assimilated through the relationship between vertical temperature structure function and residual of sea surface height (RSSH) using an optimal interpolation scheme. A unified grid system, named as [K-E-Y], that covers the entire seas around Korea is used. We present and compare hindcasting results during 1990-1999 from a model forced by MCSST without incorporating RSSH data assimilation and the one with both MCSST and RSSH assimilated. The data assimilation is applied only in the East Sea, hence the comparison focuses principally on the mesoscale features prevalent in the East Sea. It is shown that the model with the data assimilation exhibits considerable skill in simulating both the permanent and transient mesoscale features in the East Sea.

  • PDF

토지이용도와 초기 기상 입력 자료의 선택에 따른 지상 기온 예측 정확도 비교 연구 (Comparative Study on the Accuracy of Surface Air Temperature Prediction based on selection of land use and initial meteorological data)

  • 김해동;김하영
    • 한국환경과학회지
    • /
    • 제33권6호
    • /
    • pp.435-442
    • /
    • 2024
  • We investigated the accuracy of surface air temperature prediction according to the selection of land-use data and initial meteorological data using the Weather Research and Forecasting model-v4.2.1. A numerical experiment was conducted at the Daegu Dyeing Industrial Complex. We initially used meteorological input data from GFS (Global forecast system)and GDAPS (Global data assimilation and prediction system). High-resolution input data were generated and used as input data for the weather model using the land cover data of the Ministry of Environment and the digital elevation model of the Ministry of Land, Infrastructure, and Transport. The experiment was conducted by classifying the terrestrial and topographic data (land cover data) and meteorological data applied to the model. For simulations using high-resolution terrestrial data(10 m), global data assimilation, and prediction system data(CASE 3), the calculated surface temperature was much closer to the automatic weather station observations than for simulations using low-resolution terrestrial data(900 m) and GFS(CASE 1).

구면 모델링 모드를 통한 깊이 화면 예측 방법 (Prediction Method for Depth Picture through Spherical Modeling Mode)

  • 이동석;권순각
    • 한국멀티미디어학회논문지
    • /
    • 제22권12호
    • /
    • pp.1368-1375
    • /
    • 2019
  • In this paper, an prediction method is proposed for coding of depth pictures using spherical modeling. An spherical surface which has the least error from original depth values is modeled in a block. Pixels in the block are predicted through the parameters of the modeled spherical surface. Simulation results show that average prediction errors and entropy powers are improved to 30% and 200% comparing to the intra prediction of H.264/AVC, selection ratios of the proposed spherical modeling mode is more than 25%.

입방형 영역을 사용한 반응표면계획에서 블록효과를 평가하기 위한 측도 (A Measure for Evaluating the Effect of Blocking in Response Surface Designs Using Cuboidal Regions)

  • 박상현;장대흥
    • 품질경영학회지
    • /
    • 제27권1호
    • /
    • pp.59-79
    • /
    • 1999
  • The fitting of a response surface model and the subsequent exploration of the response surface are usually based on the assumption that the experimental runs are carried out under homogeneous conditions. This, however, may be quite often difficult to achieve in many experiments. To control such an extraneous source of variation, the response surface design should be arranged in several blocks within which homogeneity of conditions can be maintained. In this case, when fitting a response surface model, the least squares estimates of the model's parameters and the prediction variance will generally depend on how the response surface design is blocked. That is, the choice of a blocking arrangement for a response surface design can have a considerable effect on estimating the mean response and on the size of the prediction variance. In this paper, we propose a measure for evaluating the effect of blocking of response surface designs using cuboidal regions.

  • PDF

AE 센서와 신경회로망을 이용한 NAK80 금형강의 자기연마 가공특성 모니터링 (Surface Condition Monitoring in Magnetic Abrasive Polishing of NAK80 Using AE Sensor and Neural Network)

  • 김광희;신창민;김태완;곽재섭
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.601-607
    • /
    • 2012
  • The magnetic abrasive polishing (MAP), for online monitoring with AE sensor attachment, was performed in this study. To predict the surface roughness after the magnetic abrasive polishing of NAK80, the signal data acquired from the AE sensor were analyzed. A dimensionless coefficient, which consisted of average of AErms and standard deviation of AE signal, was defined as a characteristic of the MAP and a prediction model was obtained using least square method. A neural network, which had multiple input parameters from AE signals and polishing conditions, was applied for predicting the surface roughness. As a result of this study, it was seen that there was very close correlation between the AE signal and the surface roughness in the MAP. And then on-line prediction of the surface roughness after the MAP of the NAK80 was possible by the developed prediction model.

엔드밀 가공중 절입깊이의 실시간 추정을 이용한 가공오차 예측 (In-Process Prediction of the Surface Error Using an Identification of Cutting Depths in End Milling)

  • 최종근;양민양
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.114-123
    • /
    • 1998
  • In the end milling process, the information of the surface errors plays an important role in adaptive control systems for precision machining. As the measuring accuracy of the surface errors directly matches the control's, it is an important factor for evaluating the performance of the system. In order to obtain the surface errors, the prediction using the cutting force, torque, motor power etc. is frequently practiced owing to the easiness in measurement. In the implementation of the prediction, the information on the cutting depths make it concrete and precise. Actually the axial depth of cut limits the range of the calculation. In general, it is not easy to know the cutting depths due to irregular shape of workpieces, inaccurate positioning of them on the table of machine tool, and machining error in the previous cutting. In addition to, even if cutting depths are informed, it is difficult to match the individual position of the cutter on the varying shape of the work material. This work suggests an algorithm estimating the cutting depths based on cutting force and makes it precise to predict the surface error. The proposed algorithm can be applied in more extensive cutting situations, such as presence of the tool wear, change of the work material hardness, etc.

  • PDF