• Title/Summary/Keyword: Surface Orientation

Search Result 1,124, Processing Time 0.02 seconds

A Study of the Capsuloligamentous Anatomy of the Glenohumeral Joint Using Magnetic Resonance Imaging and Three-Dimensional Imaging. Dynamic In Vivo Study (자기공명 영상 및 3차원 영상을 이용한 견관절 관절낭-인대의 해부학적 연구. 역동학적 생체연구)

  • Park Tae-Soo;Choi Il-Yong;Joo Kyung-Bin;Kim Sun-Il;Kim Jun-Sic;Paik Doo-Jin
    • Journal of the Korean Arthroscopy Society
    • /
    • v.4 no.2
    • /
    • pp.154-158
    • /
    • 2000
  • Purpose : The purpose of this study is to demonstrate changes in the orientation ortho glenohumeral ligaments(GHL) in different degrees of abduction and rotation of the normal healthy individuals. Materials and Methods : Saline Magnetic Resonance(MR) arthrography of nine consecutive shoulders of normal healthy adults were checked. At that time, MR images were obtained in three different positions of abduction and external rotation($0^{\circ}C\;and\;0^{\circ},\;45^{\circ}C\;and\;25^{\circ}C,\;90^{\circ}$ and maximum, respectively). From a series of consecutive MRI, three-dimensional images were reconstructed after detecting the location of the middle glenohumeral ligament(MGHL) and the inferior glenohumeral ligament(IGHL) using workstation computer. Results : The shape of the MGHL was taken in double curved, and straight, and finally curved again in three different positions of the shoulder in sequence. On the other hand, the shape of the IGHL was obliquely positioned, and curvilinear, and finally straight and extended at lower part of the anterior surface of the humeral head. Conclusions : At $45^{\circ}$ of abduction and $25^{\circ}$ of external rotation, and at $90^{\circ}$ of abduction and maximal external rotation of the shoulder, the MGHL and the IGHL had the role of the most important static stabilizer of the glenohumeral joint repectively.

  • PDF

RPC Correction of KOMPSAT-3A Satellite Image through Automatic Matching Point Extraction Using Unmanned AerialVehicle Imagery (무인항공기 영상 활용 자동 정합점 추출을 통한 KOMPSAT-3A 위성영상의 RPC 보정)

  • Park, Jueon;Kim, Taeheon;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1135-1147
    • /
    • 2021
  • In order to geometrically correct high-resolution satellite imagery, the sensor modeling process that restores the geometric relationship between the satellite sensor and the ground surface at the image acquisition time is required. In general, high-resolution satellites provide RPC (Rational Polynomial Coefficient) information, but the vendor-provided RPC includes geometric distortion caused by the position and orientation of the satellite sensor. GCP (Ground Control Point) is generally used to correct the RPC errors. The representative method of acquiring GCP is field survey to obtain accurate ground coordinates. However, it is difficult to find the GCP in the satellite image due to the quality of the image, land cover change, relief displacement, etc. By using image maps acquired from various sensors as reference data, it is possible to automate the collection of GCP through the image matching algorithm. In this study, the RPC of KOMPSAT-3A satellite image was corrected through the extracted matching point using the UAV (Unmanned Aerial Vehichle) imagery. We propose a pre-porocessing method for the extraction of matching points between the UAV imagery and KOMPSAT-3A satellite image. To this end, the characteristics of matching points extracted by independently applying the SURF (Speeded-Up Robust Features) and the phase correlation, which are representative feature-based matching method and area-based matching method, respectively, were compared. The RPC adjustment parameters were calculated using the matching points extracted through each algorithm. In order to verify the performance and usability of the proposed method, it was compared with the GCP-based RPC correction result. The GCP-based method showed an improvement of correction accuracy by 2.14 pixels for the sample and 5.43 pixelsfor the line compared to the vendor-provided RPC. In the proposed method using SURF and phase correlation methods, the accuracy of sample was improved by 0.83 pixels and 1.49 pixels, and that of line wasimproved by 4.81 pixels and 5.19 pixels, respectively, compared to the vendor-provided RPC. Through the experimental results, the proposed method using the UAV imagery presented the possibility as an alternative to the GCP-based method for the RPC correction.

Analysis of benthic macroinvertebrate fauna and habitat environment of Muljangori-oreum wetland in Jeju Island (제주도 물장오리오름 습지의 저서성 대형무척추동물상 및 서식 환경 분석)

  • Jung Soo Han;Chae Hui An;Jeong Cheol Lim;Kwang Jin Cho;Hwang Goo Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.363-373
    • /
    • 2022
  • On April 29, 2021 (1st), June 2 (2nd), and August 17 (3rd), we surveyed benthic macroinvertebrates fauna at Muljangori-oreum wetland in Bonggae-dong, Jeju Island, Korea. Muljangori-oreum wetland was divided into four areas. The survey was conducted in three accessible areas (areas 1-3). As a result of habitat environment analysis, the average monthly temperature from 2017 to 2021 was the highest in July and August and the lowest in December and February. This pattern was repeated. As a result of analyzing changes in vegetation and water surface area through satellite images, normalized difference vegetation index (NDVI) increased from February to July and decreased after July. Normalized difference water index (NDWI) was analyzed to show an inverse relationship. A total of 21 species from 13 families were identified in the qualitative survey and a total of 412 individuals of 24 species from 15 families were identified in the quantitative survey. A total of 26 species from 17 families, 8 orders, 3 classes, and 2 phyla of benthic macroinvertebrates were identified. The dominant species was Chronomidae spp. with 132 individuals (32.04%). Noterus japonicus was a subdominant species with 71 individuals (17.23%). As a result of comparative analysis of species identified in this study and the literature, it was confirmed that species diversity was high for Coleoptera and Odonata. Main functional feeding groups (FFGs) were found to be predators. Habitat orientation groups (HOGs) were found to be swimmers. In OHC (Odonata, Hemiptera, and Coleoptera) group, 17 species (73.91%) in 2021, 23 species (79.31%) in 2016, 26 species (86.67%) in 2018, and 19 species (79.17%) in 2019 were identified. Cybister japonicus, an endangered species II, was confirmed to inhabit Muljangori-oreum wetland in the literature. Ten individuals (2.43%) were also confirmed to inhabit Muljangori-oreum wetland in 2021. Therefore, continuous management and habitat protection are required to maintain the habitat environment of C. japonicus in Muljangori-oreum wetland.

A Study on the Waterscape Formation Techniques of China's Suzhou Classical Garden Based on the Water Inlet and Outlet (수구(水口)를 중심으로 분석한 중국 소주고전원림(蘇州古典園林)의 수경관 연출기법)

  • RHO Jaehyun;LYU Yuan
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.3
    • /
    • pp.116-137
    • /
    • 2024
  • This study quantitatively explored the interrelationship between water features and surrounding waterscape elements through a literature review and observational study targeting nine waterscapes of Suzhou Classical Garden in Jiangsu Province, China, which is designated as a UNESCO World Heritage Site. The purpose was to understand the objective characteristics of classical Chinese gardens and seek a basis for their differences from Korean gardens. The average area of water space in Suzhou gardens was 1,680.7㎡, which accounted for 21.3% of the total garden area, showing large variation by garden. Most of the Suzhou Gardens use springs and wells as their water sources. The Surging Waves Pavillion uses surface water, and Retreat & Reflection Garden uses seasonal water as its water source. The water pipes in Suzhou Garden are divided into a water outlet and a water outlet(water holes). Of these, the water outlet is a water outlet that imitates the water outlet just to induce a visual effect, and focuses on the meaning of the water system. It is judged to have been combined with the trend of Suzhou gardens. In addition, it was confirmed that, semantically, the arrangement of the water polo in Suzhou Garden is based on the traditional 'Gamyeo(堪輿) theory'. Meanwhile, there are five types of methods for bringing water to Suzhou Garden: Jiginbeop(直引法), Myeonggeobeop(明渠法), Invasionbeop(滲透法), Gwandobeop(管道法), and Chakjeongbeop(鑿井法). Suzhou Classical Garden mainly applies the infiltration method and the irrigation method as a method of securing water in the garden, which can be classified and defined as the water catchment method(集水法) and the water pulling method(引水法) in the domestic classification method. Among the watering techniques in Korean traditional gardens, watering methods such as 'suspension waterfall(懸瀑)', 'flying waterfall(飛瀑)' and water eluted(湧出), have not been found, and it is believed that they mainly 'rely on hide with dignity(姿逸)' and 'submerged current(潛流)' techniques. As for the watering technique, no watering technique was found that uses a Muneomi, which is applied in traditional Korean gardens. As this was applied, the seal method, penetration method, and Gwandobeop were also used in water extraction techniques. And at the inlet and outlet of Suzhou Garden, the main static water bodies were lakes, swamps, and dams. While the eastern water bodies are classified into streams, waterfalls, and springs, the water spaces in the three gardens reflect the centrifugal distributed arrangement, and the water spaces in the six places reflect the water landscape effect due to the centripetal concentrated arrangement. And as a water space landscape design technique, the techniques of 'Gyeok(隔)' and 'Pa(破)' were mainly applied at the inlet, and the techniques of 'Eom(隔)' and 'Pa(破)' were mainly applied at the outlet. For example, most bridges were built around the inlet, and sa(榭), heon(軒), gak(閣), pavilion(亭), and corridor(廊) were built, and the outlet was concealed with a stone wall. Therefore, it is understood to have embodied Suzhou Garden's idea of water(理水), which says, "Although it was created by humans, it is as if the sky is mine(雖由人作,宛自天開)."A trend was detected. Lastly, as a result of analyzing the degree of concealment and exposure in the visual composition of the inlet and outlet, it was confirmed that the water outlet was exposed only at the Eobijeong and Mountain Villa with Embracing Beauty view points of The Surging Waves Pavillion and the water outlet was hidden at other view points. Looking at these results, the 'Hyang-Hyang-Ba-Mi-Bob(向向發微法)' from the perspective of left-orientation theory of Feng Shui, which is applied in Korean traditional gardens in classical Chinese garden water management, "makes water visible as it comes in, but invisible as it goes out." It is judged that the technique was barely matched.